K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2021

lớp 7 sao giải đc

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

a: Ta có: \(x^2+2xy+y^2-4x^2y^2\)

\(=\left(x+y\right)^2-4x^2y^2\)

\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)

b: Ta có: \(x^6-y^6\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\)

c: Ta có: \(25-a^2+2ab-b^2\)

\(=25-\left(a-b\right)^2\)

\(=\left(5-a+b\right)\left(5+a-b\right)\)

14 tháng 2 2022

t thấy x=2 và y=7 thỏa pt trên

cần chứng minh các số nguyên tố khác 2 và 7 ko thỏa đk ta có các số nguyên tố phần lớn là số lẻ (trừ số 2) nên khi ta bình phương  hoặc lập phương nó lên, nó là tích hai hoặc ba số lẻ có kết quả là các số lẻ và đều có dạng x=2n+1, y=2k+1(nN)(k Z) khi đó vế trái sẽ là 2n+1+49=2k+1

<=>2n+50=2k+1

mà vế trái chia hết cho 2 còn vế phải thì ko

vậy ngoài số 2 và 7 ra thì ko có số ngto nào thỏa điều kiện

vậy x=2 và y=7

12 tháng 2 2022

mình sửa ở dòng 4 là (n\(\in N\))(k\(\in Z\))

14 tháng 8 2023

a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.

14 tháng 8 2023

e phải tách ra nhé 

x/y=3/4

=>x/3=y/4

=>x/15=y/20

y/z=5/7

=>y/5=z/7

=>y/20=z/28

=>x/15=y/20=z/28=(2x+3y-z)/(2*15+3*20-28)=186/62=3

=>x=45; y=60; z=84

13 tháng 3 2023

cảm ơn bạn nhiều