Hãy chứng tỏ rằng có vô số số chính phương tận cùng bằng ba chữ số 4 (Số chính phương là số bằng bình phương của một số tự nhiên).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của tổng đã cho là :
[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1
= 2(n - 1) : 2 + 1
= n - 1 + 1
= n
Trung bình ộng của tổng là :
[(2n - 1) + 1] : 2 = (2n - 1 + 1) : 2
= 2n : 2
= n
Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2
Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương
Có: 11111111 - 2222 = 1111 . 10001 - 2 . 1111 = 1111 . ( 10001 - 2 ) = 1111 . 9999 = 1111. 3 . 3333 = 3333 . 3333 = 33332
Vậy 11111111 - 2222 là một số chính phương.
Tham khảo: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
Vì có vô số số nguyên có tận cùng là 2 nên có vô số số chính phương có tận cùng là 4.