K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2021

a, \(\dfrac{1-sin2a}{1+sin2a}\)

\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)

\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)

\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)

19 tháng 8 2021

b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)

\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)

\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)

\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)

\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)

\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)

10 tháng 10 2023

Mn ơi cứu tui

NV
5 tháng 6 2020

\(E=\frac{cosx}{sinx}+\frac{sinx}{1+cosx}=\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\frac{cosx+1}{sinx\left(1+cosx\right)}=\frac{1}{sinx}\)

17.

\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{12}{13}\)

\(0< b< \frac{\pi}{2}\Rightarrow sinb>0\Rightarrow sinb=\sqrt{1-cos^2b}=\frac{4}{5}\)

\(sin\left(a+b\right)=sina.cosb+cosa.sinb=\frac{5}{13}.\frac{3}{5}-\frac{12}{13}.\frac{4}{5}=-\frac{33}{65}\)

18.

\(K=sin\frac{2\pi}{7}+sin\frac{6\pi}{7}+sin\frac{4\pi}{7}\)

\(\Leftrightarrow K.sin\frac{\pi}{7}=sin\frac{\pi}{7}.sin\frac{2\pi}{7}+sin\frac{\pi}{7}.sin\frac{4\pi}{7}+sin\frac{\pi}{7}.sin\frac{6\pi}{7}\)

\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\frac{3\pi}{7}+cos\frac{\pi}{7}-cos\frac{5\pi}{7}+cos\frac{5\pi}{7}-cos\frac{7\pi}{7}\right)\)

\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\pi\right)=\frac{1}{2}\left(cos\frac{\pi}{7}+1\right)=\frac{1}{2}\left(2cos^2\frac{\pi}{14}-1+1\right)=cos^2\frac{\pi}{14}\)

\(\Leftrightarrow K.2.sin\frac{\pi}{14}.cos\frac{\pi}{14}=cos^2\frac{\pi}{14}\)

\(\Leftrightarrow2K=\frac{cos\frac{\pi}{14}}{sin\frac{\pi}{14}}=cot\frac{\pi}{14}=a\Rightarrow K=\frac{a}{2}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)

Ta có: \({\sin ^2}a + {\cos ^2}a  = 1\)

 \(\Leftrightarrow \frac{1}{9} + {\cos ^2}a  = 1\)

\(\Leftrightarrow {\cos ^2}a =  1 - \frac{1}{9}= \frac{8}{9}\)

\(\Leftrightarrow \cos a  =\pm\sqrt { \frac{8}{9}}  =  \pm \frac{{2\sqrt 2 }}{3}\)

Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)

Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} =  - \frac{{\sqrt 2 }}{4}\)

Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) =  - \frac{{4\sqrt 2 }}{9}\)

\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)

\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} =  - \frac{{4\sqrt 2 }}{7}\)

b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)

\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)

Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 =  - \frac{3}{4}\)

Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)

\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)

\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)

\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 =  - \frac{{\sqrt 7 }}{4}\)

\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alphasin5α2sinα(cos4α+cos2α)=sin5α2sinα.cos4α2sinα.cos2α

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)=sin5α(sin5αsin3α)(sin3αsinα)

=\sin \alpha .=sinα.

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alphasin5α2sinα(cos4α+cos2α)=sinα

26 tháng 4 2017

Giải bài 3 trang 154 SGK Đại Số 10 | Giải toán lớp 10

23 tháng 3 2018

rút gọn biểu thức:

E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có :

\(\sin \left( {a + \frac{\pi }{4}} \right) + \sin \left( {a - \frac{\pi }{4}} \right) = 2.\sin a.\cos \frac{\pi }{4} =  - \frac{2}{3}\)

Chọn C

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Lời giải:

$-\frac{4}{5}=\cos 2x=2\cos ^2x-1$

$\Leftrightarrow \cos ^2x=\frac{1}{10}$

Vì $x\in (\frac{\pi}{4}; \frac{\pi}{2})$ nên $\cos x>0$

$\Rightarrow \cos x=\sqrt{\frac{1}{10}}$

$\sin^2x=1-\cos ^2x=\frac{9}{10}$
Vì $x\in (\frac{\pi}{4}; \frac{\pi}{2})$ nên $\sin x>0$

$\Rightarrow \sin x=\frac{3}{\sqrt{10}}$

$\sin (x+\frac{\pi}{3})=\sin x\cos \frac{\pi}{3}+\cos x\sin \frac{\pi}{3}$

$=\sqrt{\frac{9}{10}}.\frac{1}{2}+\sqrt{\frac{1}{10}}.\frac{\sqrt{3}}{2}=\frac{\sqrt{30}+3\sqrt{10}}{20}$

19 tháng 8 2021

cam on Akai Haruma