Cho hình chữ nhật ABCD.Trên đường chéo Bd lấy điểm P,gọi M là điểm đối xứng của C qua P
a, Tứ giác AMDB là hình gì
b,Gọi E,F lần lượt là hình chiếu của điểm M trên AD,AB.
Chứng minh : EF // AC và ba điểm E,F ,P thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a\()\)Gọi O là giao điểm hai đường chéo của hình chữ nhật ABCD . Dễ thấy : AM // DO
=> Tứ giác AMDB là hình thang
b\()\)Do AM // BD nên \(\widehat{OBA}=\widehat{MAE}(\text{hai giác đồng vị})\). Tam giác AOB cân ở O nên \(\widehat{OBA}=\widehat{OAB}\). Gọi I là giao điểm hai đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên \(\widehat{IAE}=\widehat{IEA}\)
Từ các chứng minh trên suy ra : \(\widehat{FEA}=\widehat{OAB}\)do đó EF // AC \((1)\)
Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC \((2)\)
Từ 1 và 2 => 3 điểm E,F,P thẳng hàng
c\()\)\(\Delta MAF~\Delta DBA(g-g)\Rightarrow\frac{MF}{FA}=\frac{AD}{AB}(\text{không đổi})\)
Bạn tham khảo nhé Bùi Quang Sang
Chúc bạn học tốt ~
a) Chọn điểm O là giao điểm của 2 đường chéo của hình chữ nhật ABCD
⇒ PO là đường trung bình của △ CAM
⇒ PO // AM ⇒ BD//AM
⇒ Tứ giác AMDB là hình thang
b) Từ a ta có: có AM // BD
⇒ \(\widehat{A_1}=\widehat{B_1}\) ( đồng vị )
Mà △ OAB cân tại O ( vì ABCD là hình chữ nhật )
⇒ \(\widehat{A_2}=\widehat{B_1}\)
⇒ \(\widehat{A_1}=\widehat{A_2}\) \(\left(1\right)\)
Gọi I là giao điểm của 2 đường chéo của hình chữ nhật AEMF
⇒ △ IEA cân tại I
⇒ \(\widehat{E_1}=\widehat{A_1}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ⇒ \(\widehat{E_1}=\widehat{A_1}\) ( ở vị trí đồng vị )
⇒ EF // AC \(\left(3\right)\)
Mặt khác IP là đường trung bình của △ MAC ( do I,P là trung điểm của AM và BD )
⇒ IP // AC \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) ⇒ EF // IP ⇒ Ba điểm E, F, P thẳng hàng
c) Xét△ MAF và △ DBA có:
\(\widehat{MFA}=\widehat{DAB}\) \(=90^o\)
\(\widehat{A_1}=\widehat{B_1}\) ( cmt ) ; \(\widehat{A_1}=\widehat{M_1}\) ( so le trong )
⇒ \(\widehat{B_1}=\widehat{M_1}\)
⇒△ MAF ∼ △ DBA ( g - g )
⇒ \(\dfrac{MF}{DA}=\dfrac{AF}{BA}\) ⇒ \(\dfrac{MF}{AF}=\dfrac{DA}{BA}\) ( không đổi )
EF //AC hay MC thế bạn
EF//AC bn ak