Cho a,b,c∈R Thõa mãn \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính \(A=a^{2014}+b^{2015}+c^{2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=a^3+b^3+c^3\)
\(< =>\left(a^3-a^2\right)+\left(b^3-b^2\right)+\left(c^3-c^2\right)=0\)
\(< =>a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\) (1)
Dễ thấy \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)\ge0\) với mọi a,b,c
do đó (1) xảy ra \(< =>a=b=c=1\)
Vậy A=3
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)
Thay (1) vào M ta có :
M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2
=>M=4.-k.-k-4k2
=>M=4k2-4k2=0
Vậy M = 0