Cho tam giác ABC vuông tại A; AB = 15cm, AC = 20cm, đường cao AH
a) Chứng minh: tam giác HBA đồng dạng với tam giác ABC
b) Tính BC, AH
c) Gọi E là điểm đối xứng vói B qua H.vẽ hình bình hành ADCE.tứ giácABCE LÀ hình gì? tại sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Bài 1:
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)
nên \(\widehat{B}=59^0\)
hay \(\widehat{C}=31^0\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
1:
góc BAH+góc KAC=90 độ
góc BAH+góc ABH=90 độ
=>góc KAC=góc ABH
Xét ΔHBA vuông tại H và ΔKAC vuông tại K có
BA=AC
góc ABH=góc CAK
=>ΔHBA=ΔKAC
c) This makes no sense. What is quadrilateral ABCE while B, E, C are collinear? May be you mean ABCD but you make some mistake when typing.
ADCE is a parallelogram, therefore, \(CE//AD\) or \(BC//AD\)
Thus, we can easily prove that ABCD is a trapezoid.
Consider the triangle ABE, its height AH is also a median. This means ABE is an isosceles triangle, whose bisector is also AH. Thus, \(\widehat{BAH}=\widehat{EAH}\)
Clearly, we get \(\widehat{BAH}=\widehat{ECA}\left(=90^o-\widehat{B}\right)\), so, \(\widehat{EAH}=\widehat{ECA}\left(=\widehat{BAH}\right)\)
On the other hand, \(EC//AD\Rightarrow\widehat{ECA}=\widehat{CAD}\) (2 staggered angles)
Thus, \(\widehat{EAH}=\widehat{CAD}\left(=\widehat{ECA}\right)\) or \(\widehat{EAH}+\widehat{EAC}=\widehat{CAD}+\widehat{EAC}\) or \(\widehat{CAH}=\widehat{DAE}\)
ADCE is a parallelogram, therefore, \(\widehat{DAE}=\widehat{DCE}\), so, \(\widehat{CAH}=\widehat{DCE}\left(=\widehat{DAE}\right)\) or \(\widehat{CAH}=\widehat{DCB}\)
We also have \(\widehat{CAH}=\widehat{B}\left(=90^o-\widehat{ACB}\right)\), so \(\widehat{B}=\widehat{DCB}\left(=\widehat{CAH}\right)\)
Consider the trapezoid ABCD (AD//BC), it has \(\widehat{B}=\widehat{DCB}\), therefore, ABCD is an isosceles trapezoid.
d) It's pretty easy! Since ABE is an isosceles triangle, \(AE=AB\). Guess what? We've already had \(AB=15cm\). So, simply, we get \(AE=15cm\) !!!