K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải:

Ta thấy, mỗi số hạng trong $b$ đều lớn hơn $1$ (do tử số lớn hơn mẫu số)

Do đó $b>1$

Ta có đpcm.

Giải:

B=2021/52+2021/52+2021/53+...+2021/100

Nhận xét: Ta thấy các số hạng ở dãy B đều > 1

2021/51 > 1

2021/52 > 1

2021/53 > 1

...

2021/100 > 1

=>B > 1

Vậy B>1

Chúc bạn học tốt!

15 tháng 4 2021

=> A < B

chắc vại-.-

tui hok giỏi toán lém

15 tháng 4 2021

con bái mẹ 

9 tháng 3 2021

Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).

Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).

Thay vào đẳng thức cần cm ta có đpcm.

21 tháng 4 2022

= 2021 x 45 + 2021 x 1 + 2021 x 51 + 2021 x 3

= 2021 x (45 + 1 + 51 + 3)

= 2021 x 100

=202100

DD
9 tháng 6 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow ab^2+a^2b+ac^2+a^2c+bc^2+b^2c+2abc=0\)

\(\Leftrightarrow ab^2+a^2b+ac^2+bc^2+a^2c+abc+b^2c+abc=0\)

\(\Leftrightarrow\left(a+b\right)ab+c^2\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(c^2+ab+bc+ac\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Vậy ta có các trường hợp: \(a=-b,c=0\)hoặc \(b=-c,a=0\)hoăc \(a=-c,b=0\).

Với từng trường hợp ta đều có đpcm. 

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Sửa lại đề: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}$.

--------------

Lời giải:

\(\left\{\begin{matrix} a+b+c=2021\\ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\end{matrix}\right.\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0\)

\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\Leftrightarrow (a+b)(b+c)(c+a)=0\)

$\Leftrightarrow (2021-c)(2021-a)(2021-b)=0$

Do đó ít nhất 1 trong 3 số $a,b,c$ có 1 số có giá trị bằng $2021$

19 tháng 4 2022

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)

\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)

\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)

\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).

-Đến đây thôi bạn, câu hỏi sai rồi ạ.