Tìm các số hữu tỉ x, y > 0 sao cho x + (1/y), y + (1/x) thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ Ta có \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
=> \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)thì \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
2 \(xy=\frac{x}{y}\Rightarrow y=\frac{x}{xy}=\frac{1}{y}\Rightarrow y^2=1\Rightarrow y=+-1\)
nếu \(y=1\Rightarrow x+y=xy=x+1=x\Rightarrow x-x=-1\Rightarrow0=-1\)vô lí (loại)
\(\Rightarrow y=-1\Rightarrow x+y=xy=x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)(thỏa mãn)
vậy \(x=\frac{1}{2};y=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\\x-z=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\left(y-z\right)=\frac{\left(y-z\right)\left(y-x\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Rightarrow\left(xyz\right)^2=1\Leftrightarrow\orbr{\begin{cases}xyz=1\\xyz=-1\end{cases}}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho hỏi ko phải cô giáo có dc làm ko:v
Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)
\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)
Xét \(x+y+z\ne0\) ta có:
\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)
\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)
\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó:
\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)
Tìm các số hữu tỉ x, y > 0 sao cho \(x+\dfrac{1}{y}\), \(y+\dfrac{1}{x}\) \(\inℤ\)
\(x+\dfrac{1}{y}=\dfrac{xy+1}{y}\), \(y+\dfrac{1}{x}=\dfrac{xy+1}{x}\) \(\inℤ\)
\(\Rightarrow\) \(xy+1⋮y\) và \(xy+1⋮x\)
\(\Rightarrow1⋮y\) và \(1⋮x\) ( vì xy chia hết cho x và y )
\(\Rightarrow x\in\left\{\pm1\right\}\) và \(y\in\left\{\pm1\right\}\)
Nhưng x, y lại là nhưng số hữu tỉ dương \(\Rightarrow\left(x;y\right)=\left(1;1\right)\)
Kết luận:...