Tìm số tự nhiên nhỏ nhất chia cho 3, 4, 5 có số dư lần lượt là 1, 3, 1
giải với giảng chi tiết giùm mình nữa nha!!!(:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là ab
Ta có a x10+bx1 :5 dư 4 : 4 dư 3:3 dư 2 :2 dư 1
=> b=9
Ta thử 19 :5 dư 4
19 :4 dư 3
19:3 dư 1 loại
29:5 dư 4
29 :4 dư loại
.....................
a=9 => 59 :5 dư 4 chia 4 dư 3 chia 3 dư 2 chia 2 dư 1
vậy số đó là 59
2 Số lớn là
2/5 : (5-2) x5=10/15
Số bé là
10/15-2/5= 4/15
3 Ta thấy diện tích hình tam giác APQ = 1/4
diện tích hình PBQC
diện tích PBQC là
54:5x4=43,2 (m2)
Đặt số cần tìm là A thì A + 2 chia hết cho BCNN(3, 4, 5, 6) = 60. Do đó A + 2 có dạng 60k với k nguyên dương. Hơn nữa, A chia hết cho 13 dẫn đến cần tìm k nhỏ nhất sao 60k = 13h + 2 với h nguyên dương và dễ thấy h chẵn.
Đặt h = 2x => 30k = 13x + 1 <=> 4k = 13y + 1 với y = x - 2k. Vậy y chia 4 dư 3, khi đó 13y + 1 ≥ 13.3 + 1 = 40 => k ≥ 10.
Nói cách khác giá trị nhỏ nhất của k là 10, suy ra A = 60.10 - 2 = 598.
đáp án:
a=31
giải thích bước giải:
gọi a là số tự nhiên nhỏ nhất (a E N*)
vì a chia cho 3 dư 1 => a = 3.x+1
=> a+29=3.x+30
=> a+29=3.(x+10)
=> (a+29) ⋮ 3 (1)
vì a chia cho 4 dư 3 => a=4.y+3
=> a+29= 4.y+32
=> a+29= 4.(y+8)
=> (a+29) ⋮ 4 (2)
vì a chia cho 5 dư 1 => a= 5.z+1
=>a+29=5.z+30
=> a+29=5.(z+6)
=> (a+29) ⋮ 5 (3)
từ (1) ; (2) ; (3) => (a+29) E BC (3 ; 4 ; 5)
Có BCNN (3 ; 4 ; 5)= 3. 22.5=60
=> a+29 E B(60) ={0 ; 60 ; 120 ; ...}
=>a E {-29 ; 31 ; 91 ; ....}
Mà a là số tự nhiên nhỏ nhất
=> a=31
CHÚC BN HỌC TỐT:>>
Ta có :
a : 7 dư 4 => a + 3 chia hết cho 7
a : 11 dư 14 => a + 3 chia hết cho 11
a : 49 dư 46 => a + 3 chia hết cho 49
=> a + 3 thuộc B ( 7,11, 49 )
=> a + 3 thuộc BCNN ( 7, 11, 49 ) = 539
=> a = 536
Vậy, số đó là 536
Từ đề => a+3 chia hết cho (7,14,49)
7=7
14=2.7
49=72
=>BCNN(7,14,49)=72.2=98
a+3=98
a=98-3
a=95
vậy a = 95
Theo bài ra, ta có:
n nhỏ nhất => n + 5 nhỏ nhất
n chia 11 dư 6 => n + 5 chia hết cho 11
n chia 17 dư 12 => n + 5 chia hết cho 17
n chia 29 dư 24 => n + 5 chia hết cho 29
Từ 4 điều trên => n + 5 = BCNN(11; 17; 29)
Ta thấy UCLN(11; 17; 29) = 1 => BCNN(11; 17; 29) = 11.17.29 = 5423
=> n + 5 = 5423
=> n = 5423 - 5
=> n = 5418
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
gọi số cần tìm là a ( a \(\in\)N*)
vì a : 3 dư 1, a : 4 dư 3, a : 5 dư 1 nên
a - 1 chia hết cho 3
a - 3 chia hết cho 4 => a - 3 + 4 = a - 1 chia hết cho 4
a - 1 chia hết cho 5
=> a -1 \(\in\)BC(3,4,5)
3 = 3
4 = 22
5 = 5
BCNN(3,4,5) = 3 . 22 . 5 = 3 . 4 . 5 = 60
BC(3,4,5) = B(60) = {0;60;120;180;.....}
vì a là số tự nhiên nhỏ nhất nên a = 60
vậy số tự nhiên nhỏ nhất cần tìm là 60