K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

\(a^2+b^2+c^2=a^3+b^3+c^3\)

\(< =>\left(a^3-a^2\right)+\left(b^3-b^2\right)+\left(c^3-c^2\right)=0\)

\(< =>a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\) (1)

Dễ thấy \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)\ge0\) với mọi a,b,c

do đó (1) xảy ra \(< =>a=b=c=1\)

Vậy A=3

19 tháng 5 2016

Trong ba số a,b,c có ít nhất 2 số cùng tính chẵn lẻ

\(\Rightarrow\)(a+b)(b+c)2(c+a)3 luôn là số chẵn

\(\Rightarrow\)2016a-b+63 là số chẵn

\(\Rightarrow\)2016a-b là số lẻ

\(\Rightarrow\)2016a-b=1

\(\Rightarrow\)a-b=0

\(\Rightarrow\)a=b

Khi đó:2b(b+c)2(c+b)3=1+63

\(\Rightarrow\)2b(b+c)5=64

\(\Rightarrow\)b(b+c)5=32

Vì b,c\(\ge\)1\(\Rightarrow\)(b+c)\(\ge\)2\(\Rightarrow\)(b+c)5>32

\(\Rightarrow\)b(b+c)5\(\ge\)32

\(\Rightarrow\)b=1,c=1

\(\Rightarrow\)a=1

\(\Rightarrow\)P=1

20 tháng 2 2017

1