cho 3 số dương a,b,c thỏa mãn a^2 + b^2 + c^2 =1
CMR: a^2/(1+b-a) + b^2/(1+c-b) + c^2/(1+a-c) >=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+bc+ca\le1\)
\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)
\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)
\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Có \(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)
\(b\sqrt{1-c^2}=\sqrt{b^2\left(1-c^2\right)}\le\dfrac{b^2+1-c^2}{2}\)
\(c\sqrt{1-a^2}=\sqrt{c^2\left(1-a^2\right)}\le\dfrac{c^2+1-a^2}{2}\)
=> \(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\le\dfrac{3}{2}\)
Dấu "=" <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\)
<=> \(a^2+b^2+c^2=\dfrac{3}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{1+b-a}+a^2\left(1+b-a\right)\ge2a^2\)
\(\frac{b^2}{1+c-b}+b^2\left(1+c-b\right)\ge2b^2\)
\(\frac{c^2}{1+a-c}+c^2\left(1+a-c\right)\ge2c^2\)
Cộng theo vế rồi rút gọn, ta được:
\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}+a^2b+b^2c+c^2a-a^3-b^3-c^3\ge1\)
Vậy ta cần cm BĐT \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\), luôn đúng với BĐT AM-GM 3 số
Vậy BĐT được chứng minh