Cho hình chữ nhật ABCD có O là giao điểm 2 đuòng chéo. Từ O kẻ OE vuông góc AB, OF vuông góc AD
a) Cm AEOF là hình chữ nhật. Tính EF biết AC =12 cm
b) Kẻ AH vuông góc DB, CK vuông góc BD (H,K thuộc BD). Cm AK // HC
c) Cm EFHO là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAID vuông tại I và ΔCKB vuông tại K có
AD=CB
\(\widehat{D}=\widehat{B}\)
Do đó: ΔAID=ΔCKB
Suy ra: AI=CK
Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
mà \(\widehat{AIC}=90^0\)
nên AICK là hình chữ nhật
a: Sửa đề: AD=6cm
BC=AD=6cm
CD=AB=8cm
BD=căn 6^2+8^2=10cm
Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5
nên góc DBC=53 độ
=>góc BDC=37 độ
b: CH=6*8/10=4,8cm
BH=BC^2/BD=6^2/10=3,6cm
a: BD=căn 8^2+6^2=10cm
Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5
=>góc DBC=37 độ
=>góc BDC=53 độ
b: CH=8*6/10=4,8cm
BH=BC^2/BD=64/10=6,4cm
a, Dễ CM AEOF là hình chữ nhật vì có 3 góc vuông
=>AO=EF
Mà AO=OC=AC/2 (O là tr.điểm AC do ABCD là hình chữ nhật)
=>EF=AC/2=12/2=6cm
b) CM \(\Delta AHO=\Delta CKO\left(ch-gn\right)\) => AH=KC
Mà AH//KC (cùng vuông góc với BD)
=>AHCK là hình bình hành => AK//HC
c, Có OA=OB=OC=OD (do ABCD là hình chữ nhật)
tam giác OAD cân có OE là đg cao nên cũng là trung tuyến => F là tr.điểm AD
Xét tam giác AHD vuông ở H có F là tr.điểm AD nên HF là trung tuyến ứng với cạnh huyền AD => HF=AF (=1/2AH)
Mà AF=OE (AEOF là hình chữ nhật)
=>HF=OE
Dễ CM EF là đg trung bình của tam giác ABD => EF//BD hay EF//OH=>EFHO là hình thang,mà HF=OE
=>EFHO là hình thang cân