Số dư trong phép chia đa thức f(x)=1-x+x^2-x^3+x^4-...-x^99+x^100 cho (x+1) là bao nhiêu ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DN
0
TT
2
21 tháng 2 2017
Áp dụng định lý bơ-zu nhé
Đa thức f(x) chia cho đa thức x-a thì có số dư là: f(a)
Áp dụng bài này số dư là: F(-1)
Áp dụng định lý Bê-du, tìm được số dư phép chia f(x) cho x+1 chính là f(-1)
Số dư là :
\(f\left(-1\right)=1-\left(-1\right)+\left(-1\right)^2-\left(-1\right)^3+...-\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=1+1+1+...+1\)
( 101 số )
\(=1.101=101\)
Vậy ...
101
k mình mình ka lại