K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Áp dụng định lý Bê-du, tìm được số dư phép chia f(x) cho x+1 chính là f(-1)

Số dư là :

\(f\left(-1\right)=1-\left(-1\right)+\left(-1\right)^2-\left(-1\right)^3+...-\left(-1\right)^{99}+\left(-1\right)^{100}\)

\(=1+1+1+...+1\)

      ( 101 số )

\(=1.101=101\)

Vậy ...

18 tháng 11 2016

101

k mình mình ka lại

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

28 tháng 10 2020

600000000<1

28 tháng 10 2020

Cho mình xin cách làm đi

21 tháng 2 2017

Áp dụng định lý bơ-zu nhé

Đa thức f(x) chia cho đa thức x-a  thì có số dư là: f(a)

Áp dụng bài này số dư là: F(-1)

25 tháng 2 2017

định lý bơ-zu lớp mấy vậy

29 tháng 3 2021

có f(x)=(x+1)A(x)+5

f(x)=(x2+1)B(x)+x+2

do f(x) chia cho (x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a

=(x2+1)(C(x).x+C(x)+a)+bx+c−a

Vậy bx+c−a=x+2⇒\hept{b=1c−a=2

mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4

vậy số dư trong phép chia f(x) cho x3+x2+x+1là