Với giá trị nào của m thì các hàm số sau là hàm số bậc nhất:
a) y=(m-4)x+5
b) y=(m-2)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm số đã cho là hàm số bậc nhất thì:
3m + 5 ≠ 0
⇔ 3m ≠ -5
⇔ m ≠ -5/3
b) Để hàm số đã cho là hàm số bậc nhất thì:
2m² + 3 ≠ 0
⇔2m² ≠ -3 (luôn đúng)
Vậy m ∈ R
c) Để hàm số đã cho là hàm số bậc nhất thì:
m² - 3m = 0 và 3 - m ≠ 0
*) m² - 3m = 0
⇔ m(m - 3) = 0
⇔ m = 0 hoặc m - 3 = 0
**) m - 3 = 0
⇔ m = 3
*) 3 - m ≠ 0
⇔ m ≠ 3
Vậy m = 0 thì hàm số đã cho là hàm số bậc nhất
a: Để đây là hàm số bậc nhất thì 3m+5<>0
=>3m<>-5
=>\(m< >-\dfrac{5}{3}\)
b: Để đây là hàm số bậc nhất thì \(2m^2+3\ne0\)
mà \(2m^2+3>=3>0\forall m\)
nên \(m\in R\)
c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-3m=0\\3-m< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-3\right)=0\\m< >3\end{matrix}\right.\Leftrightarrow m=0\)
Hàm là bậc nhất khi:
a. \(3m-2\ne0\Rightarrow m\ne\dfrac{2}{3}\)
b. \(3-m>0\Rightarrow m< 3\)
c. \(\left\{{}\begin{matrix}2m-1\ne0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m\ne-2\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}m^2-4=0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
a: ĐKXĐ: \(m\ne\dfrac{2}{3}\)
b: ĐKXĐ: \(m< 3\)
c: ĐKXĐ: \(\left[{}\begin{matrix}m\ge\dfrac{1}{2}\\m< -2\end{matrix}\right.\)
d: ĐKXĐ: \(m=2\)
a) Ta có: \(y=\sqrt{m-3}\cdot x+\dfrac{2}{3}\left(m\ge3\right)\)
Để đây là hàm số bậc nhất thì: \(\sqrt{m-3}\ne0\Leftrightarrow m=3\)
Do: \(\sqrt{m-3}\ge0\forall m\ge3\)
Nên với \(m\ge3\) thì y đồng biến trên R
b) Ta có: \(y=\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\cdot x+2010\left(m\ge0;m\ne5\right)\)
Để đây là hàm số bậc nhất thì: \(\sqrt{m}-\sqrt{5}\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m\ne5\end{matrix}\right.\)
Do \(\sqrt{m}+\sqrt{5}>0\Rightarrow\sqrt{m}-\sqrt{5}< 0\Leftrightarrow m< 5\)
Vậy với 0 ≤ m < 5 thì y nghịch biến trên R
a: ĐKXĐ: \(m\le5\)
b: ĐKXĐ: \(m\notin\left\{-1;1\right\}\)
c: ĐKXĐ: \(m\ne-2\)
a/ \(m\ne4\)
b/\(m\ne2\)