Gọi H là trực tâm của tam giác đều ABC, đường cao AD. Lấy M thuộc BC. Gọi E; F lần lượt là hình chiếu của M trên AB; AC. Gọi I là trung điểm của AM.
a) Xác định dạng của tứ giác DEIF
b) Chứng minh đường thẳng MH; ID; EF đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên
=> EI = DI ( = ½ AM)
=> Tam giác EID cân tại I
Lại có các tam giác AEI và ADI cân tại I nên:
^EIM = 2^EAI và ^MID = 2^IAD
=> ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ
(Vì AD là đường cao nên là phan giác ^A)
Tam giác EID cân lại có ^EID = 60 độ nên đều
Tương tự tam giác IFD đều nên: EI = IF = FD = DE => Tứ giác DEIF là hình thoi
b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID.
=> HO//IK và HM//IK
=> Tia HO và HM trùng nhau hay M, H, O thẳng hàng => MH, ID, EF đồng quy tại O
a) Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên
=> EI = DI ( = ½ AM)
=> Tam giác EID cân tại I
Lại có các tam giác AEI và ADI cân tại I nên:
^EIM = 2^EAI và ^MID = 2^IAD
=> ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ
(Vì AD là đường cao nên là phan giác ^A)
Tam giác EID cân lại có ^EID = 60 độ nên đều
Tương tự tam giác IFD đều nên: EI = IF = FD = DE => Tứ giác DEIF là hình thoi
b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID.
=> HO//IK và HM//IK
=> Tia HO và HM trùng nhau hay M, H, O thẳng hàng => MH, ID, EF đồng quy tại O
Xét ΔABD vuông tại D và ΔCHD vuông tại D có
góc BAD=góc HCD
=>ΔABD đồng dạng vớiΔCHD
Tam giác AEM vuông tại I có EI là trung tuyến
=> EI = IA = ½ AM
=> Tam giác EIA cân tại I
=> ^EAI = ^AEI
=> ^MIE = ^EAI + ^AEI = 2.^EAI
C/m tương tự, ta có :
DI = ½ AM, ^MID=2.^DAI
FI = ½ AM, ^MIF=2.^FAI
Tam giác EID cân tại I (vì EI=DI=½AM)
mà ^EID=^MIE+^MID=2.^EAI+2.^DAI=2.(^EAI+^DA...
=> Tam giác EID đều
=> EI = ED = DI (1)
Tam giác DIF cân tại I (vì DI=FI=½AM)
mà ^FID=^MIF-^MID=2.^FAI-2.^DAI=2.(^FAI-^DA...
=> Tam giác IDF đều
=> FI = FD = ID (2)
Từ (1) và (2) suy ra EI=ED=FI=FD (=ID)
=> EIFD là hình thoi
=> KI=KD
Gọi N là trung điểm của AH
Tam giác ABC đều có có H là trực tâm
=> H là trọng tâm
=> AN = HN = HD
Tam giác AMH có AI=MI, AN=HN
=> IN là đường trung bình
=> IN // MH (3)
Tam giác IAN có KI=KD (cmt), DH=NH
=> KH là đường trung bình
=> KH // IN (4)
Dùng hình của bạn Ngọc nhé
a) \(\Delta ABC\)đều có \(\widehat{BAC}=60^0;\)đường cao AD cũng là phân giác và trực tâm H cũng là trọng tâm
I là trung điểm của cạnh huyền chung AM của các tam giác vuông \(\Delta AEM,\Delta AFM,\Delta ADM\)nên \(IA=IE=ID=IF=\frac{AM}{2}\)(1)
\(\widehat{EIM}\)là góc ngoài của \(\Delta AIE\)cân tại I nên \(\widehat{EIM}=2\widehat{BAM}\). Tương tự, \(\widehat{MID}=2\widehat{MAD};\widehat{MIF}=2\widehat{MAC}\)
\(\widehat{EID}=\widehat{EIM}+\widehat{MID}=2\left(\widehat{BAM}+\widehat{MAD}\right)=2\widehat{BAD}=\widehat{BAC}=60^0\)
\(\widehat{EIF}=\widehat{EIM}+\widehat{MIF}=2\left(\widehat{BAM}+\widehat{MAC}\right)=2.60^0=120^0\)
\(\Rightarrow\widehat{DIF}=120^0-60^0=60^0\)
\(\Delta EDI\)cân tại I có \(\widehat{EID}=60^0\)nên là tam giác đều, suy ra EI = ED (2)
\(\Delta FDI\)cân tại I có \(\widehat{DIF}=60^0\)nên là tam giác đều, suy ra FI = FD (3)
(1),(2),(3) => IE = ED = DF = IF => DEIF là hình thoi
b) Gọi P là trung điểm AH thì \(AP=PH=\frac{AH}{2}=HD\)
Cho ID cắt EF tại K thì K là trung điểm ID (tính chất hình thoi ABCD)
\(\Delta AMH\)có IP là đường trung bình nên IP // MH (4)
\(\Delta DPI\)có KH là đường trung bình nên IP // KH (5)
(4),(5) => M,K,H thẳng hàng. Vậy MH, ID, EF đồng quy tại K