Giải giúp mình với. Cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADHE có
\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tứ giác BDEC có
\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BDC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
Do đó: BDEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Ta có: \(AB^2+HC^2=\left(AA'^2+A'B^2\right)+\left(A'H^2+A'C^2\right)\)
\(=\left(AA'^2+A'C^2\right)+\left(A'B^2+A'H^2\right)=AC^2+HB^2\)
Lại có: \(BC^2+HA^2=\left(BB'^2+B'C^2\right)+\left(B'H^2+B'A^2\right)\)
\(=\left(BB'^2+B'A^2\right)+\left(B'C^2+B'H^2\right)=AB^2+HC^2\)
\(\Rightarrow AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)
d) Ta có: \(\left(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}+\dfrac{2b}{\sqrt{a}-\sqrt{b}}\right)\left(\dfrac{a-b}{\sqrt{a^3}+\sqrt{b^3}+\sqrt{a^2b}+\sqrt{ab^2}}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}+\dfrac{2b}{\sqrt{a}-\sqrt{b}}\right)\cdot\left(\dfrac{a-b}{a\sqrt{a}+b\sqrt{b}+a\sqrt{b}+b\sqrt{a}}\right)\)
\(=\dfrac{a-b+2b}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{a-b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b\right)}\)
\(=\dfrac{\left(a+b\right)\cdot\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(a+b\right)\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
=1
\(\Leftrightarrow16x^4-4x^2-4xy+y^2+1=0\)
\(\Leftrightarrow\left(16x^4-8x^2+1\right)+\left(4x^2-4xy+y^2\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)^2+\left(2x-y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-1=0\\2x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)=\left(-\dfrac{1}{2};-1\right);\left(\dfrac{1}{2};1\right)\)