K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2021

Ta có: 

\(x^2-2\left(2m+1\right)x+4m^2+4m=0\\ \Leftrightarrow\left(x^2-2mx\right)-2\left(m+1\right)x+4m\left(m+1\right)=0\\ \Leftrightarrow x\left(x-2m\right)-2\left(m+1\right)\left(x-2m\right)=0\\ \Leftrightarrow\left(x-2m\right)\left(x-2m-2\right)=0\Leftrightarrow x_1=2m;...or...x_2=2m\)

\(\Rightarrow\left(x_1-2m\right)\left(x_2-2m\right)=0\Leftrightarrow\left(x_1-2m\right)^2\left(x_2-2m\right)^2=0\Leftrightarrow\left(x_1^2-4mx_1+4m^2\right)\left(x_2^2-4mx_2+4m^2\right)=0\)

24 tháng 5 2017

Ta có: 

3 log 27 2 x 2 - x + 2 m - 4 m 2 + log 1 3 x 2 + m x - 2 m 2 = 0 ⇔ log 3 2 x 2 - x + 2 m - 4 m 2 = log 3 x 2 + m x - 2 m 2 ⇔ x 2 + m x - 2 m 2 > 0 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 ⇔ x 2 + m x - 2 m 2 > 0 x 2 - m + 1 x + 2 m - 2 m 2 = 0 ⇔ x = m x = 1 - m

Phương trình đã cho có hai nghiệm  x 1 ; x 2  thỏa mãn  x 1 2 + x 2 2 > 1

Đáp án C

13 tháng 3 2018

3 tháng 7 2021

\(x^2-2\left(2m+1\right)x+4m^2+4m=0\)

Để pt có hai ng pb\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow4>0\left(lđ\right)\)

\(\Rightarrow\)Pt luôn có hai ng pb với mọi m

\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(2m+1\right)+\sqrt{4}}{2}=2m+2\\x_2=\dfrac{2\left(2m+1\right)-\sqrt{4}}{2}=2m\end{matrix}\right.\)

Có \(\left|x_1-x_2\right|=x_1+x_2\)

\(\Leftrightarrow\left|2m+2-2m\right|=2m+2+2m\)

\(\Leftrightarrow2=4m+2\)

\(\Leftrightarrow m=0\)

Vậy...

3 tháng 7 2021

Tham khảo 

Tìm m để phương trình x2 – 2(2m + 1)x + 4m2 + 4m = 0 

NV
16 tháng 3 2022

\(\Delta'=\left(m-5\right)^2+2m-9=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

Pt đã cho luôn luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-5\right)\\x_1x_2=-2m+9\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2\left(m-5\right)x_1-2m+9=0\Rightarrow x_1^2=2\left(m-5\right)x_1+2m-9\)

Thay vào bài toán:

\(2\left(m-5\right)x_1+2m-9+2\left(m-5\right)x_2=4m^2\)

\(\Leftrightarrow2\left(m-5\right)\left(x_1+x_2\right)+2m-9=4m^2\)

\(\Leftrightarrow2\left(m-5\right).2\left(m-5\right)+2m-9=4m^2\)

\(\Leftrightarrow-38m+91=0\)

\(\Rightarrow m=\dfrac{91}{38}\)

7 tháng 11 2019

Đáp án B

P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0 ⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0 ⇔ x 2 - ( m - 1 ) x + 2 m - 2 m 2 = 0 ( x - m ) ( x + 2 m ) > 0 ⇔ [ x = 2 m x = 1 - m x - m x + 2 m > 0  

Điều kiện để pt đã cho có 2 nghiệm ⇔ 4 m 2 > 0 x - m x + 2 m > 0 ⇔ m ∈ - 1 ; 1 2 \ 0  

Khi đó x 1 2 + x 2 2 > 1 ⇔ 4 m 2 + 1 - m 2 > 1 ⇔ 5 m 2 - 2 m > 0 ⇔ [ m > 2 5 m < 0  

Do đó S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2

5 tháng 6 2019

Đáp án B

P T ⇔ log 2 2 x 2 - x + 2 m - 4 m 2 + log 2 x 2 + m x - 2 m 2 = 0

⇔ 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 > 0

Điều kiện để pt đã cho có 2 nghiệm

Do đó

  S = - 1 ; 0 ∪ 2 5 ; 1 2 ⇒ A = - 1 + 2 + 1 = 2

16 tháng 8 2017

Đáp án là B

Δ=(-4m)^2-4(4m^2-m+2)

=16m^2-16m^2+4m-8=4m-8

Để phương trình có hai nghiệm phân biệt thì 4m-8>0

=>m>2

|x1-x2|=2

=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

=>\(\sqrt{\left(4m\right)^2-4\left(4m^2-m+2\right)}=2\)

=>\(\sqrt{16m^2-16m^2+4m-8}=2\)

=>\(\sqrt{4m-8}=2\)

=>4m-8=4

=>4m=12

=>m=3(nhận)