K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

mệt quá

10 tháng 11 2017

a)Ta có:S = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 +...+2^199+ 2^200.

=( 2^1 + 2^2) + (2^3 + 2^4) + (2^5+2^6)+...+(2^197+2^198)+(2^199+2^200).

=2.(1+2)+2^3.(1+2)+2^5.(1+2)+...+2^197.(1+2)+2^199(1+2)

=2.3+2^3.3+2^5.3+...+2^197.3+2^199.3

=3.(2+2^3+2^5+...+2^197+2^199)

Vậy tổng S chia hết cho 3.

Xin lỗi bn,mik o làm kịp

24 tháng 9 2017

Ta có: \(\left(a+b+c\right)^2+12=4\left(a+b+c\right)+2\left(ab+bc+ca\right)\)

Vì \(a=b=c=2\Rightarrow\) a , b , c bằng nhau và bằng 2.

Biến đổi một chút ta có:

\(\left(2+2+2\right)^2+12=4\left(2+2+2\right)+2\left(22+22+22\right)\)

\(\Leftrightarrow6^2+12=4\left(6\right)+2\left(66\right)\)

\(\Leftrightarrow36+12=4\left(6\right)+2\left(66\right)\)

Ta có: 36 chia hết cho 2 , 12 chia hết cho 2

Vậy biểu thức trên xảy ra khi \(a=b=c=2\RightarrowĐPCM\)

Ps: Chưa chắc đúng, mình mới lớp 6 thôi!

7 tháng 5 2017

1/n -1/n+a=a+n/n(n+a) -n/n(a+n

               =a/n (n+a )

7 tháng 5 2017

\(\frac{a}{n.\left(n+a\right)}=\frac{n+a-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n-a\right)}=\frac{1}{n}-\frac{1}{n-a}\)\(\left(đpcm\right)\)

20 tháng 12 2023

Đặt B = 2² + 2³ + 2⁴ + ... + 2²⁰²³

⇒ 2B = 2³ + 2⁴ + 2⁵ + ... + 2²⁰²⁴

⇒ B = 2B - B

= (2³ + 2⁴ + 2⁵ + ... + 2²⁰²⁴) - (2² + 2³ + 2⁴ + ... + 2²⁰²³)

= 2²⁰²⁴ - 2²

⇒ A = 2² + 2²⁰²⁴ - 2² = 2²⁰²⁴

= 2.2²⁰²³ ⋮ 2²⁰²³

Vậy A ⋮ 2²⁰²³

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

$A=4+2^2+2^3+....+2^{2023}$

$2A=8+2^3+2^4+...+2^{2024}$

$\Rightarrow 2A-A=(8+2^3+2^4+...+2^{2024})-(4+2^2+2^3+....+2^{2023})$

$\Rightarrow A=2^{2024}+8-4-2^2=2^{2024}\vdots 2^{2023}$

Ta có đpcm/

16 tháng 4 2019

chứng minh gì bạn?

10 tháng 11 2017

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

10 tháng 11 2017

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7