Tìm giá trị nhỏ nhất của biểu thức: $A(x)$ $= $ $x^{2}-4 x+24$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)
Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là 24 khi x=2.
b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)
Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)
Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
\(A=x^2+3x-5=x^2+3x+\frac{9}{4}-\frac{29}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
Vậy \(A_{min}=-\frac{29}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
\(A=\left(x+\frac{4}{7}\right)^{24}+\left(-\frac{1}{2}\right)\)
\(\text{Vì }\left(x+\frac{4}{7}\right)^2\ge0\)
\(\text{nên }\left(x+\frac{4}{7}\right)^{24}+\left(-\frac{1}{2}\right)\ge-\frac{1}{2}\)
\(\text{Hay }A\ge-\frac{1}{2}\)
\(\text{Vậy }GTNN_A=-\frac{1}{2}\text{,dấu bằng xảy ra khi x = }-\frac{4}{7}\)
Ta có \(A\left(x\right)=x^2-4x+24\) \(=\left(x^2-4x+4\right)+20\) \(=\left(x-2\right)^2+20\)
Vì \(\left(x-2\right)^2\ge0\Leftrightarrow\left(x-2\right)^2+20\ge20\Leftrightarrow A\left(x\right)\ge20\)
Vậy giá trị nhỏ nhất của biểu thức đã cho là 20
Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)
\(A\left(x\right)=\left(x-2\right)^2+20\)
Có (x-2)2\(\ge\)0
=> \(\left(x-2\right)^2+20\ge20\)
=> Amin = 20 <=> x = 2