K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai rồi bạn

a: PN=10cm

b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có

PK chung

\(\widehat{MPK}=\widehat{EPK}\)

Do đó: ΔPMK=ΔPEK

c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có

KM=KE

\(\widehat{MKD}=\widehat{EKN}\)

DO đó: ΔMKD=ΔEKN

Suy ra: KD=KN

d: Ta có: PM+MD=PD

PE+EN=PN

mà PM=PE

và MD=EN

nên PD=PN

hayΔPDN cân tại P

28 tháng 3 2021

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)vv

5 tháng 4 2021

câu a phải làm như này chứ

A. Xét tam giác NMA và tam giác NPB có:

NM=NP ( tam giác NMP cân)

MA=PB (gt) 

Góc M= góc P (tam giác NMP cân )

=> tam giác NMA= tam giác NPB( c.g.c)

=> NA=NB( hai cạnh t.ứng)

=> tam giác NAB cân

 

 

12 tháng 3 2019

N P M I K H

Cm: a) Ta có: góc NPM + góc NPK = 1800 (kề bù)

                     góc NMP + góc NMI = 1800 (kề bù)

Và góc NPM = góc NMP (vì t/giác MNP cân tại N)

=> góc NPK = góc NMI

Xét t/giác MNI và t/giác NPK

có NP = NM (gt)

  góc NPK = góc NMI (cmt)

  PK = MI (gt)

=> t/giác MNI = t/giác NPK (c.g.c)

b) Xét t/giác NHM và t/giác NHP

có NP = NM (gt)

 góc NHP = góc NHM = 900 (gt)

 NH : chung

=> t/giác NHM  = t/giác NHP (ch - cgv)

=> HM = HP (hai cạnh tương ứng)

c) Ta có: T/giác MNI = t/giác NPK (cm câu a)

=> NK = NI (hai cạnh tương ứng)

=> t/giác NIK là t/giác cân tại N

20 tháng 12 2020

a) Xét ΔPIM và ΔPIN có 

PM=PN(gt)

PI chung

MI=NI(I là trung điểm của MN)

Do đó: ΔPIM=ΔPIN(c-c-c)

b) Ta có: PM=PN(gt)

nên P nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MI=NI(I là trung điểm của MN)

nên I nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra PI là đường trung trực của MN

hay PI\(\perp\)MN(đpcm)

c) Xét ΔPIM vuông tại I và ΔEIN vuông tại I có 

PI=EI(gt)

IM=IN(I là trung điểm của MN)

Do đó: ΔPIM=ΔEIN(hai cạnh góc vuông)

nên PM=EN(hai cạnh tương ứng)

a) Xét ΔMNP và ΔEFP có 

MP=EP(gt)

\(\widehat{MPN}=\widehat{EPF}\)(hai góc đối đỉnh)

NP=FP(gt)

Do đó: ΔMNP=ΔEFP(c-g-c)

b) Ta có: MN=ND(gt)

mà N nằm giữa M và D(gt)

nên N là trung điểm của MD

Ta có: MP=PE(gt)

mà P nằm giữa M và E(gt)

nên P là trung điểm của ME

Xét ΔMDE có 

N là trung điểm của MD(cmt)

P là trung điểm của ME(cmt)

Do đó: NP là đường trung bình của ΔMDE(Định nghĩa đường trung bình của tam giác)

hay NP//DE(Định lí 2 về đường trung bình của tam giác)

14 tháng 1 2021

l