Cho a, b \(\in\) N ; a > 2 ; b > 2. Chứng minh rằng a + b < a . b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:\(8+15=23;8+4=12;45+15=60;45+4=49\)
\(\Rightarrow\) Các tập hợp của C là : \(\left\{12;23;49;60\right\}\)
b, Ta có:
\(8-4=4;45-15=30;45-4=41\)
\(\Rightarrow\) Các tập hợp của D là : \(\left\{4;30;41\right\}\)
c, Ta có:
\(8.15=120;8.4=32;45.15=675;45.4=180\)
\(\Rightarrow\) Các tập hợp của E là : \(\left\{32;120;180;675\right\}\)
d, Ta có:
\(8:4=2;45:15=3\)
\(\Rightarrow\) Các tập hợp của G là: \(\left\{2;3\right\}\)
Lấy n bất kì thuộc tập hợp B.
Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)
\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)
\( \Rightarrow n \in A\)
Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)
Có các phần tử của A là bội của 6
Các phần tử của B là bội của 15
Các phần tử của C là bội của 30
mà [6;15]=30
=> Những phần tử vừa chia hết cho 6; vừa chia hết cho 15 thì sẽ chia hết cho 30
Hay \(C=A\cap B\)
Liệt kê các phần tử của 2 tập hợp
a. \(A=\left\{0,1,2,3\right\}\) \(B=\left\{-2,-1,0,1,2\right\}\)
\(A\cap B=\left\{0,1,2\right\}\)
b. Có 20 tích được tạo thành
-2 | -1 | 0 | 1 | 2 | |
0 | 0 | 0 | 0 | 0 | 0 |
1 | -2 | -1 | 0 | 1 | 2 |
2 | -4 | -2 | 0 | 2 | 4 |
3 | -6 | -3 | 0 | 3 | 6 |
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
Vì a > 2 và b > 2 nên ta đặt a = 2 + m; b = 2 + n ( m,n \(\in\) N* )
a + b = ( 2 + m ) + ( 2 + n ) = 4 + ( m + n ) ( 1 )
a . b = ( 2 + m ) . ( 2 + n ) = ( 2 + m ) . 2 + ( 2 + m ) . n = 4 + 2m + 2n + mn = 4 + 2 . ( m + n ) + m . n ( 2 )
Do m,n \(\in\) N* nên 2 . ( m + n ) > m + n và m .n > 0
Từ ( 1 ) và ( 2 ) suy ra a + b < a . b
đề sai: Ví dụ a = b = 1 => không đúng