Cho P = xyz - xy2 - xz2, Q = x3 + y3. CMR: nếu x-y=z thì P+Q=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM - GM:
\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).
Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.
\(C=xyz+\left(xy+yz+xz\right)+x+y+z-1\)
Ta có ĐT tương đương
\(C=xyz+\left(xy+yz+xz\right)+x+y+z-1=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
Thay \(x=9\) ; \(y=10\) ; \(z=11\) vào BT có :
\(\left(9-1\right)\left(10-1\right)\left(11-1\right)=720\)
Vậy .........
C = xyz - xy - yz - xz + x + y +z- 1
= xy(z-1) - y(z-1) - x(z-1) + 1(z-1)
(xy-y-x+1)(z-1)
a) \(B=x^3+x^2z+y^2z-xyz+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)
b) \(B=\left(x^2-xy+y^2\right)\left(x+y+z\right)=x^2-xy+y^2\)
\(=x^2-2.x.\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
Dấu bằng xảy ra khi \(x=y=0\)
Ta có:
\(x^3+x^2z-xyz+y^2z+y^3\)
\(=\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)
\(=0\cdot\left(x^2-xy+y^2\right)\)
\(=0\left(dpcm\right)\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu x ≥ 0, y ≥ 0, z ≥ 0 thì:
x + y + z ≥ 0
x - y 2 + y - z 2 + z - x 2 ≥ 0
Suy ra:
x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z
Hay: x 3 + y 3 + z 3 3 ≥ x y z
Tớ sửa đề đa thức Q nhé.
\(P+Q=\left(xyz-xy^2-xz^2\right)+\left(z^3+y^3\right)\)
Theo đề cho, ta có: \(x-y=z\Rightarrow x=z+y\)
Thay \(x=z+y\), ta được:
\(P+Q=\left(z+y\right).yz-\left(z+y\right).y^2-\left(z+y\right).z^2+z^3+y^3\)
\(=yz^2+y^2z-y^2z-y^3-z^3-yz^2+z^3+y^3\)
\(=\left(yz^2-yz^2\right)+\left(y^2z-y^2z\right)+\left(-y^3+y^3\right)+\left(-z^3+z^3\right)\)
\(=0\)
\(\Rightarrowđpcm\)