K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2022

Tớ sửa đề đa thức Q nhé.

\(P+Q=\left(xyz-xy^2-xz^2\right)+\left(z^3+y^3\right)\)

Theo đề cho, ta có: \(x-y=z\Rightarrow x=z+y\)

Thay \(x=z+y\), ta được:

\(P+Q=\left(z+y\right).yz-\left(z+y\right).y^2-\left(z+y\right).z^2+z^3+y^3\)

\(=yz^2+y^2z-y^2z-y^3-z^3-yz^2+z^3+y^3\)

\(=\left(yz^2-yz^2\right)+\left(y^2z-y^2z\right)+\left(-y^3+y^3\right)+\left(-z^3+z^3\right)\)

\(=0\)

\(\Rightarrowđpcm\)

20 tháng 1 2021

Áp dụng bđt AM - GM:

\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).

Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.

20 tháng 1 2021

Áp dụng BĐT Cosi:

\(\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)\)

\(\ge3\left(x+y+z\right)\)

\(\ge x+y+z+2.3\sqrt[3]{xyz}\)

\(=x+y+z+6\)

\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)

Đẳng thức xảy ra khi \(x=y=z=1\)

30 tháng 5 2017

ko pic nũa mik mới lúp 4 mí 

k mik ik bn tốt

\(C=xyz+\left(xy+yz+xz\right)+x+y+z-1\)

Ta có ĐT tương đương

\(C=xyz+\left(xy+yz+xz\right)+x+y+z-1=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

Thay \(x=9\) ; \(y=10\) ; \(z=11\) vào BT có :

\(\left(9-1\right)\left(10-1\right)\left(11-1\right)=720\)

Vậy .........

17 tháng 7 2018

C = xyz - xy - yz - xz + x + y +z- 1

= xy(z-1) - y(z-1) - x(z-1) + 1(z-1)

(xy-y-x+1)(z-1)

8 tháng 3 2022

a) \(B=x^3+x^2z+y^2z-xyz+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)

\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)

b) \(B=\left(x^2-xy+y^2\right)\left(x+y+z\right)=x^2-xy+y^2\)

\(=x^2-2.x.\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)

Dấu bằng xảy ra khi \(x=y=0\)

28 tháng 9 2023

Ta có:

\(x^3+x^2z-xyz+y^2z+y^3\)

\(=\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)

\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)

\(=0\cdot\left(x^2-xy+y^2\right)\)

\(=0\left(dpcm\right)\)

20 tháng 2 2022

uầy hình như thiếu dữ kiện ý

12 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu x ≥ 0, y  ≥  0, z  ≥  0 thì:

x + y + z  ≥  0

x - y 2 + y - z 2 + z - x 2 ≥ 0

Suy ra:

x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z

Hay:  x 3 + y 3 + z 3 3 ≥ x y z