Giá trị x thỏa mãn
lx-1l+l2y-6l=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì /x-1/ luôn > hoặc = 0
/2x-6/ luôn > hoặc = 0
=> x-1+2x-6=12
x+2x = 12+1+6
3x = 19
x = \(\frac{19}{3}\)
\(I=-3+\left|\frac{1}{2}-x\right|\)
Vì \(\left|\frac{1}{2}-x\right|\ge0\)
\(\Rightarrow-3+\left|\frac{1}{2}-x\right|\ge-3\)
Dấu = xảy ra khi \(\frac{1}{2}-x=0\Rightarrow x=\frac{1}{2}\)
Vậy Min I = -3 khi x=1/2
Lời giải:
$x-y=2\Rightarrow x=y+2$
$C=|x+1|+|2y+1|=|y+2+1|+|2y+1|=|y+3|+|2y+1|$
Nếu $y\geq \frac{-1}{2}$ thì:
$C=y+3+2y+1=4y+4\geq 4.\frac{-1}{2}+4=2$
Nếu $\frac{-1}{2}> y\geq -3$ thì:
$C=y+3+[-(2y+1)]=2-y> 2-\frac{-1}{2}=2,5$
Nếu $y< -3$ thì:
$C=-y-3-2y-1=-4y-4=-4(y+1)> -4(-3+1)=8$
Từ các TH trên suy ra $C_{\min}=2$ khi $y\geq \frac{-1}{2}$
Tìm min của biểu thức sau
a,biết x-y=3 A=lx-6l+ly+1l
b,x-y=2, B=l2x+1l+l2y+1l
c,2x+y=3,C=l2x+3l+ly+2l+2
a) A = 5-(x-2)2 \(\le\)5
<=> x-2 = 0
<=> x=2
b) B = -lx-2l-5 \(\le\)-5
<=> x-2 = 0
<=> x=2
c)C = 3-l2y-1l-lx-2l\(\le\)3
<=>\(\hept{\begin{cases}2y-1=0\\\text{x-2 = 0 }\end{cases}}\)
<=>\(\hept{\begin{cases}y=\frac{1}{2}\\x=2\end{cases}}\)
các giá trị của x thỏa mãn là
+-11; +-10; +-9; +-8; +-7; +-6; +-5; +-4; +-3; +-2; +-1; 0; 12
Vậy tổng các giá trị số nguyên x thỏa mãn là
+-11+ (+-10)+ (+-9)+ (+-8)+ (+-7)+ (+-6)+ (+-5)+ (+-4)+ (+-3)+ (+-2)+ (+-1)+ 0+ 12
=0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +12
=12
Giaỉ:
Ta chia ra hai trường hợp
TH1:x-1=0 => x=0+1+1
TH2: 2y-6=0 =>2y=0+6=6 => y=6:2=3
Vậy giá trị x thỏa mãn là 1
Xin lỗi nha ở chỗ TH1 => x=0+1=1 ms đúng