K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

GTLN=6 khi x=-1

19 tháng 5 2017

Bấm nhầm nút gửi

\(A=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)

Điều kiện

\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\sqrt{5}\le x\le\sqrt{5}\\A\ge2x\end{cases}}\)

\(\Rightarrow A\ge-2\sqrt{5}\) (1)

Bình phương 2 vế ta được

\(5x^2-4Ax+A^2-5=0\)

Để phương trình theo x có nghiệm thì 

\(\Delta'=\left(2A\right)^2-4.\left(A^2-5\right).5\ge0\)

\(\Leftrightarrow100-16A^2\ge0\)

\(\Leftrightarrow A\le\frac{5}{2}\)(2)

Từ (1) và (2)  \(\Rightarrow-2\sqrt{5}\le A\le\frac{5}{2}\)

19 tháng 5 2017

\(A=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)

Điều kiện

\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Lời giải:

Ta thấy $(x+1)^2\geq 0$ với mọi $x$

$\Rightarrow 2(x+1)^2\geq 0$

$\Rightarrow 2(x+1)^2-3\geq 0-3=-3$

Vậy GTNN của biểu thức là $-3$. Giá trị này đạt được tại $x+1=0$

$\Leftrightarrow x=-1$

---------------------------

$(2x-1)^2\geq 0$ với mọi $x$

$\Rightarrow 4-(2x-1)^2\leq 4-0=4$
Vậy GTLN của biểu thức là $4$. Giá trị này đạt được tại $2x-1=0$

$\Leftrightarrow x=\frac{1}{2}$

a: a(x)=x^3+3x^2+5x-18

b(x)=-x^3-3x^2+2x-2

b: m(x)=a(x)+b(x)

=x^3+3x^2+5x-18-x^3-3x^2+2x-2

=7x-20

c: m(x)=0

=>7x-20=0

=>x=20/7

24 tháng 3 2017

b)

\(-x^2+3x-2=-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{3.\left(-1\right).\left(-2\right)-9}{2.\left(-2\right)}\\ =-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{1}{4}\)

\(-\left(x+\dfrac{3}{-2}\right)^2\le0\) nên

\(-\left(x+\dfrac{3}{-2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

vậy MAXA = 0,25 tại x=1,5

24 tháng 3 2017

bạn giải thích thêm cái dòng đầu tiên đk k

4 tháng 3 2022

\(a,P\left(x\right)=2x^3-3x+7-x=2x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

\(M\left(x\right)=2x^3-4x+7+\left(-5x\right)^3-x^2+4x-5=-3x^3-x^2+2\)

\(N\left(x\right)=2x^3-4x+7-\left(-5x\right)^3+x^2-4x+5=7x^3+x^2-8x+12\)

b,\(M\left(x\right)=-3x^3-x^2+2=0\)

Nghiệm xấu lắm bạn

20 tháng 3 2017

không có nghiệm 

20 tháng 3 2017

\(2x^2-4x+5=2\left(x^2-2x+\frac{5}{2}\right)=2\left[\left(x^2-2x+1\right)+\frac{3}{2}\right]=2\left[\left(x-1\right)^2+\frac{3}{2}\right]=2\left(x-1\right)^2+3\ge3\)

\(\Rightarrow x\in\phi\)

4 tháng 9 2017

Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)

\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)

Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)

          \(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)

\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)

Vậy MaxA=1/8 khi x=8

4 tháng 9 2017

min trước nhé max mình đang nghĩ 

ta có 

ĐKXĐ \(x>=4\)

vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)

=> \(\frac{\sqrt{x-4}}{2x}>=0\)

dấu = xảy ra <=> x=4