Chứng minh rằng với mọi \(n\ge1;n\inℕ\) thì ta luôn có \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{n^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..........................
\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{\left(n-1\right)n}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Leftrightarrow A< 1-\dfrac{1}{n}< 1\)
\(\Leftrightarrow A< 1\)
Vậy ......
Đặt \(T=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(2n-1\right)n}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}-\frac{1}{n}\)
\(=\frac{1}{2}-\frac{1}{n}< \frac{1}{2}^{\left(đpcm\right)}\) (không chắc nha)
Đặt \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Ta có: \(\frac{1}{1}=\frac{1}{1},\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},....,\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
=> \(A< \frac{1}{2^2}.\left[1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right]\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\frac{1}{2^2}.\left(2-\frac{1}{n+1}\right)=\frac{1}{2}-\frac{1}{4.\left(n+1\right)}\)
p/s: bài tớ ko bt đúng ko, nhưng tth bn làm vậy sẽ ko có quy luật, đoạn này
nếu cứ theo quy luật, tiếp tục sẽ ntn:\(\frac{1}{6^2}< \frac{1}{5.6};\frac{1}{8^2}< \frac{1}{6.7};\frac{1}{10^2}< \frac{1}{7.8}\)
xét n=1 n=2 không thỏa mãn, xét n>=3 thì (n+3)^3<(n+2)(n+1)(n+8)<(N+4)^3
suy ra không thể là lập phương của 1 số tự nhiên
Ap dung bo de : \(\sqrt{x-1}+\sqrt{y-1}\le\sqrt{xy}\left(x,y\ge1\right)\) (1)
(1) <=> \(2\sqrt{\left(x-1\right)\left(y-1\right)}\le\left(x-1\right)\left(y-1\right)+1\) (dung theo AM-GM)
Ta co \(VT\le\sqrt{ab}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}=VP\)
Dau = xay ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\\left(ab+1\right)\left(c-1\right)=1\end{cases}}\)
Trước hết, ta đi chứng minh bổ đề: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(*) (với \(p,q\ge1\))
Thật vậy: (*)\(\Leftrightarrow\left(\sqrt{p-1}+\sqrt{q-1}\right)^2\le pq\) \(\Leftrightarrow\left(p-1\right)+\left(q-1\right)+2\sqrt{\left(p-1\right)\left(q-1\right)}\le pq\)\(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(pq-p-q+1\right)+1\) \(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(p-1\right)\left(q-1\right)+1\)
Bất đẳng thức cuối đúng theo bất đẳng thức AM - GM vì \(\left(p-1\right)\left(q-1\right)+1\ge2\sqrt{\left(p-1\right)\left(q-1\right).1}=2\sqrt{\left(p-1\right)\left(q-1\right)}\)
Như vậy, ta đã chứng minh được bất đẳng thức phụ: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(với \(p,q\ge1\))
Áp dụng vào bài toán, ta được: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{ab}+\sqrt{c-1}\)\(=\sqrt{\left(ab+1\right)-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\)(q.e.d)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\ab\left(c-1\right)=1\end{cases}}\)
Xét hàm số : \(f_n\left(x\right)=e^x-1-x-\frac{x^2}{2}-.......-\frac{x^n}{n!}\)
Ta sẽ chứng minh \(f_n\left(x\right)\ge0\) (*) với mọi \(x\ge;n\in N\)
* Với \(n=1:f_1\left(x\right)=e^x-1-x\Rightarrow f_1'\left(x\right)=e^x-1\ge0\) và \(f'\left(x\right)=0\) khi x = 0
\(\Rightarrow\) Hàm số \(f_1\left(x\right)\) đồng biến với \(x\ge0\Rightarrow f_1\left(x\right)\ge f_1\left(0\right)=0\)
Vậy (*) đúng với n = 1
* Giả sử (*) đúng với n = k hay \(f_k\left(x\right)\ge0\), ta cần chứng minh (*) đúng với \(n=k+1\) hay \(f_{k+1}9x=e^x-1-x-\frac{x^2}{2}-...-\frac{x^k}{k!}-\frac{x^{k+1}}{\left(k+1\right)!}\ge0\)
Thật vậy :
\(f_{k+1}'\left(x\right)=e^x-1-x-\frac{x^k}{k!}=f_k\left(x\right)\ge0\) (theo giả thiết quy nạp và \(f'_{k+1}\left(0\right)\ge f_{k+1}\left(0\right)=0\)khi \(x=0\)
\(\Rightarrow\) hàm số \(f_{k+1}\left(x\right)\) đồng biến với mọi \(x\ge0\Rightarrow f_{k+1}\left(x\right)\ge f_{k+1}\left(0\right)=0\) Vậy (*) đúng với n = k+1
Theo phương pháp quy nạp \(\Rightarrow e^x\ge1+x+\frac{x^2}{2}+..+\frac{x^n}{n!}\) với mọi \(x\ge0;n\in N\)
\(\left(n+1\right)\left(n+2\right)...\left(2n\right)=\frac{\left(2n\right)!}{n!}=\frac{1.3.5...\left(2n-1\right).2.4.6...2n}{n!}\)
\(=\frac{1.3.5...\left(2n-1\right).\left(1.2\right)\left(2.2\right)\left(3.2\right)...\left(n.2\right)}{n!}=\frac{1.3.5...\left(2n-1\right).n!.2^n}{n!}\)
\(=1.3.5...\left(2n-1\right).2^n⋮2^n\)
Ta có số hạng tổng quát
\(\dfrac{1}{\left(n+1\right)\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}< \dfrac{\left(\sqrt{n+1}-\sqrt{n}\right).2.\sqrt{n+1}}{\left(n+1\right)\sqrt{n}}=\)
\(=\dfrac{2\left(n+1\right)-2\sqrt{\left(n+1\right)n}}{\left(n+1\right)\sqrt{n}}=\dfrac{2}{\sqrt{n}}-\dfrac{2}{\sqrt{n+1}}\)
Áp dụng vào bài toán
\(VT< \dfrac{2}{\sqrt{1}}-\dfrac{2}{\sqrt{2}}+\dfrac{2}{\sqrt{2}}-\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}-\dfrac{2}{\sqrt{4}}+...+\dfrac{2}{\sqrt{n}}-\dfrac{2}{\sqrt{n+1}}=\)
\(=2-\dfrac{2}{\sqrt{n+1}}< 2\)
Xin lỗi
\(\dfrac{1}{\left(n+1\right)\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}< \dfrac{\left(\sqrt{n+1}-\sqrt{n}\right).2.\sqrt{n+1}}{\left(n+1\right)\sqrt{n}}\)