Bài 1: Tìm x
a/ 5.(x+1)2=80
b/ 9x-1=1
c/ 5x-2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$ a/ 12x(x – 5) – 3x(4x - 10) = 120$
`<=>12x^2-60x-12x^2+30x=120`
`<=>-30x=120`
`<=>x=-4`
Vậy `x=-4`
$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$
`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`
`<=>-6x^2+26x=112-6x^2-2x`
`<=>28x=112`
`<=>x=4`
Vậy `x=4`
$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$
`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`
`<=>-32x-18x^2=154+45x-18x^2`
`<=>77x=-154`
`<=>x=-2`
Vậy `x=-2`
`A=(9(x-2)+18)/(2-x)+2/x`
`=-9+18/(2-x)+2/x`
`=-9+2(9/(2-x)+1/x)`
Áp dụng bđt cosi-schwarts ta có:
`9/(2-x)+1/x>=(3+1)^2/(2-x+x)=8`
`=>A>=16-9=7`
Dấu "=" xảy ra khi `3/(2-x)=1/x`
`<=>3x=2-x`
`<=>4x=2<=>x=1/2(tm)`
b
`y=x/(1-x)+5/x`
`=(x-1+1)/(1-x)+5/x`
`=1/(1-x)+5/x-1`
Áp dụng cosi-schwarts ta có:
`1/(1-x)+5/x>=(1+sqrt5)^2/(1-x+x)=(1+sqrt5)^2=6+2sqrt5`
`=>y>=5+2sqrt5`
Dấu "=" xảy ra khi `1/(1-x)=sqrt5/x`
`<=>x=sqrt5-sqrt5x`
`<=>x(1+sqrt5)=sqrt5`
`<=>x=sqrt5/(sqrt5+1)=(sqrt5(sqrt5-1))/(5-1)=(5-sqrt5)/4`
`c)C=2/(1-x)+1/x`
Áp dụng bđt cosi schwarts ta có:
`C>=(sqrt2+1)^2/(1-x+x)=3+2sqrt2`
Dấu "=" xảy ra khi `sqrt2/(1-x)=1/x`
`<=>sqrt2x=1-x`
`<=>x(sqrt2+1)=1`
`<=>x=1/(sqrt2+1)=(sqrt2-1)/(2-1)=sqrt2-1`
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
\(a,12x=4x-30\Leftrightarrow8x=-30\Leftrightarrow x=-\dfrac{15}{4}\)
\(b,2x-5=x-1\Leftrightarrow2x-x=-1+5\Leftrightarrow x=4\)
\(c,2-5x=5x-10\Leftrightarrow-10x=-12\Leftrightarrow x=\dfrac{6}{5}\)
\(d,9x-6=1x-5\Leftrightarrow8x=1\Leftrightarrow x=\dfrac{1}{8}\)
\(e,2x-5=2x-1\Leftrightarrow2x-2x=-1+5\Leftrightarrow0x=4\) (Vô lí)\(\Rightarrow x\in\varnothing\)
Lời giải:
a.
a. $(x-1)(x+2)-(x-3)(x+1)=5x-3$
$\Leftrightarrow (x^2+x-2)-(x^2-2x-3)=5x-3$
$\Leftrightarrow 3x+1=5x-3$
$\Leftrightarrow 4=2x$
$\Leftrightarrow x=2$
b.
$(2x-1)(x+3)-(x-2)(x+3)=3x+1$
$\Leftrightarrow (2x^2+5x-3)-(x^2-4)=3x+1$
$\Leftrightarrow x^2+5x+1=3x+1$
$\Leftrightarrow x^2+2x=0$
$\Leftrightarrow x(x+2)=0$
$\Leftrightarrow x=0$ hoặc $x=-2$
c.
$x^2(x-1)-x(x-1)(x+1)=0$
$\Leftrightarrow x^2(x-1)-(x^2+x)(x-1)=0$
$\Leftrightarrow (x-1)[x^2-(x^2+x)]=0$
$\Leftrightarrow (x-1)(-x)=0$
$\Leftrightarrow x-1=0$ hoặc $-x=0$
$\Leftrightarrow x=1$ hoặc $x=0$
d.
$4x(x-5)-(2x-3)(2x+3)=9$
$\Leftrightarrow 4x^2-20x-(4x^2-9)=9$
$\Leftrightarrow -20x=0$
$\Leftrightarrow x=0$
a: Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-3\right)\left(x+1\right)=5x-3\)
\(\Leftrightarrow x^2+2x-x-2-x^2-x+3x+3-5x+3=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow2x=4\)
hay x=2
b: Ta có: \(\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=3x+1\)
\(\Leftrightarrow2x^2+6x-x-3-x^2+4-3x-1=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
c: Ta có: \(x^2\left(x-1\right)-x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
d: Ta có: \(4x\left(x-5\right)-\left(2x-3\right)\left(2x+3\right)=9\)
\(\Leftrightarrow4x^2-20x-4x^2+9=9\)
hay x=0
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
a/ 5.(x+1)2=80
(x+1)2=80:5
(x+1)2=16
=>x+1=4 ; x+1=-4
x=4-1 x=-4-1
x=3 x=-5
vậy.....
b/ 9x-1=1
=>x-1=0
x=1
vậy.....
Câu c làm như câu b
a) 5.(x+1)^2 = 80
=> (x+1)^2 = 16
=> \(\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
b) \(9^{x-1}=1\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
c) \(5^{x-2}=1\Rightarrow x-2=0\)
\(\Rightarrow x=2\)