K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBAD vuông tại A và ΔBHA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔBAD\(\sim\)ΔBHA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BD\)(đpcm)

14 tháng 4 2021

undefined

a: Xét ΔBAD vuông tại A và ΔBHA vuông tại H có

góc ABD chung

=>ΔBAD đồng dạng với ΔBHA

=>BA/BH=BD/BA

=>BA^2=BH*BD

b: Xét ΔAMB có IE//MB

nên IE/MB=AI/AM

Xét ΔAMC có ID//MC

nên ID/MC=AI/AM

=>IE/MB=ID/MC

mà MB=MC

nên IE=ID

=>I là trung điểm của ED

c: DE//BC

=>DI/BM=HI/HM

=>EI/CM=HI/HM

mà góc EIH=góc HMC

nên ΔIEH đồng dạng với ΔMCH

=>góc IHE=góc MHC

=>C,H,E thẳng hàng

a: ΔABC vuông tại A

mà AM là trung tuyến

nên AM=MB=MC

=>góc MBA=góc MAB

b: góc AEF=90 độ-góc EAM=90 độ-góc B

=>gócAEF=góc ACB

c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có

góc AEF=góc ACB

=>ΔAFE đồng dạng với ΔABC

=>AF/AB=AE/AC

=>AF*AC=AB*AE

1: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

=>AB=căn 3,6*10=6(cm)

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>HB^2=6^2-3,6^2=4,8^2

=>HB=4,8(cm)

b: Xét ΔMAB có

BE,AH là đường cao

BE cắt AH tại D

=>D là trực tâm

=>MD vuông góc AB

=>MD//AC

=>góc HMD=góc HCA

ΔHDM vuông tại H

=>HD=DM*sinDMH

=DM*sinC

 

14 tháng 5 2022

A B C E F I M

a/ Xét tg vuông ABC có 

BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)

b/ Xét tg vuông AEF và tg vuông AFM có

\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)

Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)

Xét tg MBE và tg MFC có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)

=> tg MBE đồng dạng với tg MFC (g.g.g)

c/ Xét tg vuông ABC và tg vuông AFE có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

=> tg ABC đông dạng với tg AFE

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

d/

 

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét tứ giác BECD có

M là trung điểm của BC

M là trung điểm của ED

Do đó: BECD là hình bình hành

Suy ra: CE//BD

c: Hình bình hành BECD có \(ED\perp BC\)

nên BECD là hình thoi

=>BC là tia phân giác của góc DBE

2 tháng 5 2022

1. xét tam giác BAD và tam giác BCA:

góc D= góc A = 90o

góc B chung

=> tam giác BAD ~ tam giác BCA (g.g)

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BD}{AB}\)

=> AB2=BD.BC