Bài 1: Cho S= 3 + 3^2 + 3^3 +...+ 3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1+2+2^2+2^3+...+2^17) chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S= 2 + 22 + 23 +...+ 2100
S= ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
S= 6+ 22 ( 2+22)+ ...+ 298 (2+22)
S=6+ 22.6+ ...+ 298.6
S= 6.(22+...+298) chia hết cho 3 ( vì 6 chia hết cho 3)
Cho S = 2^1 + 2^2 + 2^3 + ... + 2^60. Tìm chữ số tận cùng của S và chứng minh rằng S chia hết cho 14
S = 2¹ + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + 2⁵⁶.30
= 30.(1 + 2⁴ + ... + 2⁵⁶)
= 10.3.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 10
Vậy chữ số tận cùng của S là 0
*) S = 2¹ + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 14 + 2³.(2 + 2² + 2³) + ... + 2⁵⁷.(2 + 2² + 2³)
= 14 + 2³.14 + ... + 2⁵⁷.14
= 14.(1 + 2³ + ... + 2⁵⁷) ⋮ 14
Vậy S ⋮ 14
S= (2+2^2+2^3+2^4) + .......+ (2^97+2^98+2^99+2^100) = 2.(1+2+2^2+2^3) + ........+2^97.(1+2+2^2+2^3)
= 2.15+........+2^97.15 = 15.(2+2^5+.........+2^97) * 15
Ta có : 2S = 2^2+2^3+2^4+.......+2^101
=> 2S-S = (2^2+2^3+2^4+.........+2^101) - (2+2^2+2^3+........+2^100) = 2^101 - 2 = S
vì 2^101-2 = 2^100.2-2 = (.....6) . 2 -2 = (.....2) - 2 = (......0)
vậy S có c/s tận cùng là 0
a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6
b) Tương tự a
c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0
Nhớ ticks đúng cho mình nhé
a) S = 2 + 22 + 23 + 24 + .... + 2100
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )
= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )
= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )
= 6 + 22 . 6 + .... + 298 . 6
= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )