K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2022

Khi \(y=0\), ta có:

\(\left(3-2\sqrt{2}\right)x+\sqrt{2}-1=0\)

\(\Leftrightarrow\left(3-2\sqrt{2}\right)x=1-\sqrt{2}\)

\(\Leftrightarrow x=\dfrac{1-\sqrt{2}}{3-2\sqrt{2}}\)

\(\Leftrightarrow x=-1-\sqrt{2}\)

Thay y=0 vào hàm số, ta được:

\(\left(3-\sqrt{2}\right)x+1=0\)

\(\Leftrightarrow x=\dfrac{-3-\sqrt{2}}{7}\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3x}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{x}{3\sqrt{x}-1}\)

b) Ta có: \(9x^2-10x+1=0\)

\(\Leftrightarrow\left(9x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào P, ta được:

\(P=\dfrac{1}{3-1}=\dfrac{1}{2}\)

c) Thay \(x=8-2\sqrt{7}\) vào P, ta được:

\(P=\dfrac{8-2\sqrt{7}}{3\left(\sqrt{7}-1\right)-1}=\dfrac{8-2\sqrt{7}}{3\sqrt{7}-4}\)

\(=\dfrac{-10+16\sqrt{7}}{47}\)

10 tháng 7 2021

a)

\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-4\right)+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3x-2\sqrt{x}-1-3\sqrt{x}+4+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3\left(x+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{x+1}{3\sqrt{x}-1}\)

NV
22 tháng 2 2021

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)

\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\) (1)

Tương tự: \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\) (2)

Cộng vế với vế và rút gọn:

\(x+y=-x-y\Leftrightarrow x+y=0\)

24 tháng 8 2019

Có xy + yz + zx = 1

=> 1 + x2 = x2 + xy + yz + zx

     1 + x2 = (x + y)(y + z)

Tương tự ta có: 

     1 + y2 = (y + x)(y + z)

     1 + z2 = (z + x)(z + y)

Thay vào P, ta được:

\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(P=xy+yz+zx+xy+yz+zx\)

\(P=2\left(xy+yz+zx\right)=2\)

Vậy P = 2

a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến

b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:

\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)

\(=9-8+\sqrt{2}-1\)

\(=\sqrt{2}\)

22 tháng 7 2021

a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.

b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`

`=> y=\sqrt2` khi `x=3+2\sqrt2`

25 tháng 7 2023

\(a,P=\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}+4-\sqrt{x}-1}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}=\dfrac{\left|\sqrt{5}-1\right|+3}{\left|\sqrt{5}-1\right|+2}=\dfrac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\dfrac{\sqrt{5}+2}{\sqrt{5}+1}\)

29 tháng 1 2022

ms lm xong luon này

undefined

30 tháng 1 2022

Thiếu rồi bạn

NV
30 tháng 1 2022

\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a\)

\(\Rightarrow x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+\left(1+x^2\right)\left(1+y^2\right)=a^2\)

\(\Rightarrow x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2.x\sqrt{1+y^2}.y\sqrt{1+x^2}+1=a^2\)

\(\Rightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2+1=a^2\)

\(\Rightarrow E^2+1=a^2\)

\(\Rightarrow E=\pm\sqrt{a^2-1}\)

30 tháng 1 2022

\(a^2=x^2y^2+(1+x^2)(1+y^2)+2xy\sqrt{(1+x^2)(1+y^2)} \\->2xy\sqrt{(1+x^2)(1+y^2)}=a^2-2x^2y^2-1-x^2-y^2 \\E^2=x^2(1+y^2)+y^2(1+x^2)+2xy\sqrt{(1+x^2)(1+y^2)} \\=x^2+y^2+2x^2y^2+a^2-2x^2y^2-1-x^2-y^2 \\=a^2-1\)