K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2022

Sửa đề: Tim m để phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn: \(x_1+3x_2=6\)

Giải

Ta có: \(\Delta=b^2-4ac=\left(-2m\right)^2-4.1.\left(2m-2\right)=4m^2-8m+8=4\left(m^2-2m+2\right)\)

\(=4\left[\left(m^2-2m+1\right)+1\right]=4\left[\left(m-1\right)^2+1\right]=4\left(m-1\right)^2+4>0\forall m\in R\)

Theo định lý Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\left(1\right)\\x_1x_2=\dfrac{c}{a}=2m-2\left(2\right)\end{matrix}\right.\)

Lại có: \(x_1+3x_2=6\) (3)

Từ (1) và (3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1+3x_2=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_2=6-2m\\x_1+3x_2=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=3-m\\x_1+3.\left(3-m\right)=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=3-m\\x_1=3m-3\end{matrix}\right.\)

Thay \(x_1=3m-3;x_2=3-m\) vào (2) ta được:

\(\left(3m-3\right)\left(3-m\right)=2m-2\)

\(\Leftrightarrow-3m^2+12m-9-2m+2=0\)

\(\Leftrightarrow3m^2-10m+7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{7}{3}\end{matrix}\right.\)

Vậy \(m=1;m=\dfrac{7}{3}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1+3x_2=6\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

b: Δ=(-2m)^2-4(m^2-2m+2)

=4m^2-4m^2+8m-8=8m-8

Để pt có 2 nghiệm phân biệt thì 8m-8>0

=>m>1

x1^2+x2^2=x1+x2+8

=>(x1+x2)^2-2x1x2-(x1+x2)=8

=>(2m)^2-2(m^2-2m+2)-2m=8

=>4m^2-2m^2+4m-4-2m=8

=>2m^2+2m-12=0

=>m^2+m-6=0

=>(m+3)(m-2)=0

mà m>1

nên m=2

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

Để pt có 2 nghiệm thì:

$\Delta'=(m-1)^2+2m-5\geq 0$

$\Leftrightarrow m^2-4\geq 0$

$\Leftrightarrow m\geq 2$ hoặc $m\leq -2$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(1-m)\\ x_1x_2=-2m+5\end{matrix}\right.\)

\(2x_1+3x_2=-5\)

\(\Leftrightarrow 2(x_1+x_2)+x_2=-5\Leftrightarrow 4(1-m)+x_2=-5\)

\(\Leftrightarrow x_2=4m-9\)

\(x_1=2(1-m)-x_2=11-6m\)

$x_1x_2=-2m+5$

$\Leftrightarrow (4m-9)(11-6m)=-2m+5$

Giải pt này suy ra $m=2$ hoặc $m=\frac{13}{6}$ (đều thỏa mãn)

 

2 tháng 5 2023

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn

2 tháng 5 2022

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

22 tháng 8 2019

a) Với m= 2, ta có phương trình:  x 2 + 2 x − 3 = 0

Ta có:  a + b + c = 1 + 2 − 3 = 0                                                             

Theo định lý Viet, phương trình có 2 nghiệm: 

x 1 = 1 ;   x 2 = − 3 ⇒ S = 1 ;   − 3 .                                                                             

b) Chứng minh rằng phương trình luôn có nghiệm  ∀ m .

Ta có:  Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ;    ∀ m                                           

Vậy phương trình luôn có nghiệm  ∀ m .                                              

c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m                                                             

Ta có:

x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0                  

Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ;   m 2 = 3 2                                                  

Vậy m= -1 hoặc m= 3/2