Tìm x,y biết :
\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+y2+$\frac{1}{x^2}+\frac{1}{y^2}$1x2 +1y2 =4
<=> \(x^2-2+\frac{1}{x^2}+y^2-2+\frac{1}{y^2}=0\)
<=>\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=0\)
=> \(x=\frac{1}{x}\) và \(y=\frac{1}{y}\)
=> \(x=1;-1\) và \(y=1;-1\)
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
a) \(\frac{1}{y}+\frac{x}{4}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{y}=\frac{1}{2}-\frac{x}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{2-x}{4}\)
\(\Leftrightarrow\left(2-x\right).y=4\)
Do \(x,y\inℤ\Rightarrow2-x,y\inℤ\)
nên \(2-x,y\) là các cặp ước của 4
Ta có bảng giá trị :
2-x | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 3 | 0 | 4 | -2 | 6 |
y | 4 | -4 | -2 | 2 | 1 | -1 |
Đánh giá | Chọn | Chọn | Chọn | Chọn | Chọn | Chọn |
Vậy : \(\left(x,y\right)\in\left\{\left(1,4\right);\left(3,-4\right);\left(0,-2\right);\left(4,2\right);\left(-2,1\right);\left(6,-1\right)\right\}\)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow x.\left(1-2y\right)=40\)
Nhận xét x,y và lập bảng giá trị tương tự câu a).
Đặt \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{x+y+z}{\left(y+z+1\right)+\left(z+x+1\right)+\left(x+y-2\right)}=\frac{\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\z+x+1=2y\\x+y-2=2z\end{cases}}\) và \(x+y+z=\frac{1}{2}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\) và \(x+y+z=\frac{1}{2}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\-\frac{1}{2}\end{cases}}\)
Vậy \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)
\(x:z=\frac{2}{3}:\frac{1}{2}=\frac{4}{3}\Rightarrow x=\frac{4}{3}.z\)
\(z:y=1:\frac{4}{7}=\frac{7}{4}\Rightarrow z=y.\frac{7}{4}\)
\(\Rightarrow y+z=y+y.\frac{7}{4}=66\)
\(y.\frac{11}{4}=66\Rightarrow y=24\)
\(\Rightarrow z=24.\frac{7}{4}=42\)
\(\Rightarrow x=42.\frac{4}{3}=56\)
a, \(\frac{x-3}{y-2}=\frac{3}{2}\)và \(x-y=4\)
Theo bài ra ta có :
\(\frac{x-3}{y-2}=\frac{3}{2}\Leftrightarrow2x-6=3y-6\Leftrightarrow2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Áps dụng tính chất dãy tỉ số bằng nhau ta đc :
\(\frac{x}{3}=\frac{y}{2}=\frac{x-y}{3-2}=\frac{4}{1}=4\)
\(\frac{x}{3}=4\Leftrightarrow x=12\)
\(\frac{y}{2}=4\Leftrightarrow y=8\)
Tương tự với b thôi bn.
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
Suy ra
\(x+y+z=\frac{1}{2}\)(1)
\(y+z+1=2x\)(2)
\(x+z+2=2y\)(3)
\(x+y-3=2z\)(4)
(2)-(1) ta có
\(1-x=2x-\frac{1}{2}\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\Leftrightarrow y+z=\frac{1}{2}-\frac{1}{2}=0\)
\(y=-z\)
\(x+z+2=\frac{1}{2}+2-y==\frac{5}{2}-y\)
\(\frac{\frac{5}{2}-y}{y}=\frac{5}{2y}-1=2\Leftrightarrow\frac{5}{2y}=3\Leftrightarrow y=\frac{5}{6}\)
\(z=-\frac{5}{6}\)
hộ mk vs mai mk nộp oy
=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0=>\)
\(\hept{\begin{cases}y-\frac{1}{y}=0\orbr{\begin{cases}y=1\\y-1\end{cases}}\\x-\frac{1}{x}=0\orbr{\begin{cases}x=1\\x=-1\end{cases}}\end{cases}}\)
=>
x=+-1
y=+-1