giúp mình với
rút gọn biểu thức (x+y)^3-3xy(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)
Bài 1:
\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2+4xy-7y^2\)
\(3\left(x-\dfrac{1}{3}y\right)\left(9x^2+3xy+y^2\right)+\left(x+y\right)\left(x^2-xy+y^2\right)-27x^3\)
\(=\left(3x-y\right)\left(9x^2+3xy+y^2\right)+\left(x+y\right)\left(x^2-xy+y^2\right)-27x^3\)
\(=27x^3-y^3+x^3+y^3-27x^3\)
\(=x^3\)
Q = (x - y)3 + (y + x)3 + (y - x)3 - 3xy(x + y)
= (x - y)3 - (x - y)3 + (x + y)[(x + y)2 - 3xy]
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2)
= x3 + y3
a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)
\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)
\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)
\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)
\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)
\(=-12x^3+16x^2y-7xy^2\)
\(\left(x-2\right)^2+y^2=0\)
mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)
nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)
=>x=2 và y=0
Thay x=2 và y=0 vào F, ta được:
\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)
\(=-12\cdot2^3\)
\(=-12\cdot8=-96\)
b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=x^3+y^3+3\left(8x^3-y^3\right)\)
\(=x^3+y^3+24x^3-3y^3\)
\(=25x^3-2y^3\)
Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)
Thay x=5 và y=-3 vào G, ta được:
\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)
\(=25\cdot125-2\cdot\left(-27\right)\)
\(=3125+54=3179\)
c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3-26y^3\)
Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)
Thay x=2 và y=1 vào H, ta được:
\(H=28\cdot2^3-26\cdot1^3\)
\(=28\cdot8-26\)
=198
a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014
a, \(M=2x^3+xy^2-3xy+1\)
b, Thay x = -1 ; y = 2 ta được
M = -2 - 2 + 6 + 1 = 3
Q = x - y 3 + y + x 3 + y - x 3 – 3xy(x + y)
= x 3 – 3 x 2 y + 3x y 2 – y 3 + y 3 + 3 y 2 .x + 3y x 2 + x 3 + y 3 – 3 y 2 .x +3y x 2 – x 3 – 3 x 2 y – 3x y 2
= x 3 – 3 x 2 y + 3x y 2 – y 3 + y 3 + 3.x y 2 + 3 x 2 .y + x 3 + y 3 – 3x. y 2 + 3 x 2 .y – x 3 – 3 x 2 y – 3x y 2
= ( x 3 + x 3 – x 3 )+ ( - 3 x 2 y + 3 x 2 y+ 3 x 2 y – 3 x 2 y)+ (3x y 2 + 3x y 2 - 3x y 2 - 3x y 2 ) + (- y 3 + y 3 + y 3 )
= x 3 + 0 x 2 y + 0.x y 2 + y 3
= x 3 + y 3
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
1, Thay x = 1/3 ; y = -1/5 ta được
\(=\dfrac{3.1}{9}-5\left(-\dfrac{1}{5}\right)+1=\dfrac{1}{3}+2=\dfrac{7}{3}\)
2, Thay x = -2 ; y = -1/2 ta được
\(=5.4\left(-\dfrac{1}{2}\right)+3\left(-2\right)\left(-\dfrac{1}{2}\right)-\dfrac{2\left(-2\right).1}{4}\)
\(=-10+3+1=-6\)
(x + y)3 - 3xy(x + y)
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= x3 + y3