K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2015

\(B=\left|2x-10\right|+\left|-3-2x\right|\ge\left|2x-10-3-2x\right|=13\)

Dấu bằng xảy ra khi 2x - 10 và -3-2x cùng dấu

\(\left|x+1,5\right|\ge0\forall x\)

Dấu " = " xảy ra khi 

| x + 1,5 | = 0

x = -1,5 

Vậy Min = 0 <=> x = -1,5

b) 

\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)

Dấu " = " xảy ra khi 

| x - 2 | = 0 

x = 2 

Vậy MinA = \(\frac{9}{10}\)<=> x = 2

\(-\left|2x-1\right|\le0\forall x\)

Dấu " = " xảy ra khi :

- | 2x - 1 | = 0

=> x = \(\frac{1}{2}\)

Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)

b) 

\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)

Dấu " = " xảy ra khi :

- | 5x - 3 | = 0

=> x = \(\frac{3}{5}\)

Vậy Max = 4 <=> x = \(\frac{3}{5}\)

Study well 

18 tháng 7 2016

a.

\(\left|6-2x\right|\ge0\)

\(\Rightarrow\left|6-2x\right|-5\ge-5\)

Vậy A có giá trị nhỏ nhất là -5 khi |6 - 2x| = 0 <=> x = 3

b.

\(\left|x+1\right|\ge0\)

\(\Rightarrow3-\left|x+1\right|\le3\)

Vậy B có giá trị lớn nhất là 3 khi |x + 1| = 0 <=> x = -1

c.

\(\left|7-x\right|\ge0\)

\(\Rightarrow-100-\left|7-x\right|\le-100\)

Vậy C có giá trị lớn nhất là -100 khi |7 - x| = 0 <=> x = 7

d.

\(\left(x+1\right)^2\ge0\)

\(\Rightarrow-\left(x+1\right)^2\le0\)

\(\left|2-y\right|\ge0\)

\(\Rightarrow-\left|2-y\right|\le0\)

\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le11\)

Vậy D có giá trị lớn nhất là 11 khi:

  • (x + 1)2 = 0 <=> x = -1
  • 2 - y = 0 <=> y = 2
18 tháng 7 2016

Bạn nào giúp mình, mình sẽ TICK cho nha

- Ari~~~

22 tháng 1 2016

Vì |x-3| luôn lớn hơn hoặc=0 với mọi x thuộc...

=> |x-3| +10 luôn lớn hơn hoặc bằng 0+10=10 

Vậy GTNN của A là MinA=10 khi và chỉ khi x-3=0 <=>x=3

13 tháng 8 2020

Bài làm:

a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)

Vậy Min(A) = 0 khi x=3/4

b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)

Vậy Max(B) = 0 khi x = -2020

13 tháng 8 2020

A = | x - 3/4 |

\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)

Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4

Vậy AMin = 0 , đạt được khi x = 3/4

B = - | x + 2020 |

\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)

\(\Rightarrow B\le0\)

Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020

Vậy BMax = 0, đạt được khi x = -2020

24 tháng 10 2017

k tớ trc ik tớ lm cho *hỳ hỳ*