K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc A=góc IFA=góc IEA=90 độ

=>AEIF là hcn

mà IF=IE

nên AEIF là hv

b: ΔABD vuông tại D

=>M là trung đuiểm của AB

ΔACD vuông tại D

=>N là trung điểm của AC

Xét ΔNAM và ΔNDM có

NA=ND

MA=MD

NM chung

=>ΔNAM=ΔNDM

=>góc NDM=góc NAM=90 độ

=>AMDN nội tiếp

NV
11 tháng 12 2021

Áp dụng Pitago: \(BC=\sqrt{AB^2+AC^2}=13\)

Do tam giác ABC vuông tại A \(\Rightarrow BC\) là đường kính

\(\Rightarrow R=\dfrac{1}{2}BC=\dfrac{13}{2}=6,5\left(cm\right)\)

12 tháng 12 2021

cảm ơn nhiều ạ

 

30 tháng 12 2017

chưa học chưa biết 

éo biết

18 tháng 12 2018

A B C O K N M x

Gọi Mx là tia đối của tia MA.

+) Ta có: Tứ giác AMBC nội tiếp có góc ngoài là ^BMx => ^BMx = ^ACB (1)

Tứ giác AKNC nội tiếp có góc ngoài là ^BKN => ^BKN = ^ACB

Xét đường tròn (BKN): ^BKN = ^BMN (2 góc nội tiếp cùng chắn cung BN) => ^BMN = ^ACB (2)

Từ (1) và (2) => ^BMx = ^BMN => MB là tia phân giác của ^NMx (*)

+) Xét đường tròn (O) có: ^ACN = ^ACB = 1/2.Sđ(AN = 1/2.^AON

Mà ^ACB = ^BMN = 1/2.^NMx (cmt) nên ^AON = ^NMx => Tứ giác AONM nội tiếp

Xét đường tròn (AONM): OA=ON => (OA = (ON => ^AMO = ^NMO = 1/2.AMN

=> MO là tia phân giác của ^AMN (**)

+) Từ (*) và (**) kết hợp với ^AMN + ^NMx = 1800 suy ra: ^OMB = 900 (đpcm).

24 tháng 8 2016

a, tam giác ABC vuông tại B có góc A = 30 độ => AC = 2 BC = 2. 3 = 6 cm

theo định lí Pytago ta có AB = \(\sqrt{ÃC^2-BC^2}=\sqrt{6^2-3^2}\) = \(3\sqrt{3}\) cm

góc C = 90 - 30 = 60 độ

b, tam giác ABH vuông tại H có góc A = 30 độ => AB = 2 BH => BH = \(\frac{3\sqrt{3}}{2}\)cm

theo định lí Pytago ta có AH = \(\sqrt{AB^2-BH^2}=\sqrt{\left(3\sqrt{3}\right)^2-\left(\frac{3\sqrt{3}}{2}\right)^2}=4,5cm\)

diện tích tam giác ABH =\(\frac{1}{2}.BH.AH=\frac{1}{2}.\frac{3\sqrt{3}}{2}.4,5=\frac{27\sqrt{3}}{8}\)cm vuông

24 tháng 8 2016

mk bận quá k lm kịp 2 câu còn lại thông cảm nha 

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2\)=\(AB^2+AC^2\)

\(BC^2\)= 52 + 122 =169

hay BC = 13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay R = \(\dfrac{BC}{2}\)= \(\dfrac{13}{2}\) =6.5(cm)