Tìm GTNN của \(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\) biết x,y>0 và x+y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)
Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)
Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x = y = 1/2
Vậy MinA = 18
Bài làm:
Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=x^2y^2+2+\frac{1}{x^2y^2}\)
\(=\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}+2\)
Mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow x^2y^2\le\frac{1}{16}\)
Thay vào ta tính được:
\(M\ge2\sqrt{x^2y^2\cdot\frac{1}{256x^2y^2}}+\frac{255}{256\cdot\frac{1}{16}}+2\)
\(=\frac{1}{8}+\frac{255}{16}+2=\frac{289}{16}\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Vậy \(Min_M=\frac{289}{16}\Leftrightarrow x=y=\frac{1}{2}\)
Đánh máy xong hết lại bấm hủy-.-
áp dụng bất đẳng thức Cauchy ta có :
\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)
\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)
\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)
\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)
Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)
1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1
Tìm GTNN của P= x-1/y2 +y-1/x2 + x-1/x2
Giải
Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1
Theo AM-GM ta có:
P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1
Dấu = xảy ra⇔x=y=z=1√3
P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!
Ta có
\(A=1-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{1}{x^2y^2}=1-\frac{x^2+y^2}{x^2y^2}+\frac{1}{x^2y^2}\)
\(=1+\frac{2xy-1}{x^2y^2}+\frac{1}{x^2y^2}=1+\frac{2}{xy}\)
\(\ge1+\frac{2×4}{\left(x+y\right)^2}=9\)
Đạt được khi x = y = 0,5