K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

S = 1 + 5 + 5^2 + 5^3 + ... + 5^2015.

S = (1 + 5 + 5^2 + 5^3) + (5^4 + 5^5 + 5^6 + 5^7) + .. + (5^2012 + 5^2013 + 5^2014 + 5^2015).

S = (1 + 5 + 5^2 + 5^3) + 5^4(1 + 5 + 5^2 + 5^3) + ... + 5^2012(1 + 5 + 5^2 + 5^3).

S = 156 + 5^4.156 + ... + 5^2012.156.

S= 156.(1 + 5^4 + ... + 5^2012).

Vì 156 chia hết cho 13 => 156.(1 + 5^4 + ... + 5^2012) chia hết cho 13 => S chia hết cho 13.

6 tháng 11 2016

S có 2016 số hạng chia thành 1008 nhóm mỗi nhóm có 2 số hạng 

S=(1+52)+(5+53)+...+(52013+52015)

S=26+5(1+52)+...+52013(1+52)

S=2.13+5.2.13+...+52013.2.13

S=13.(2+5.2+...+52013.2) chia hết cho 13 

=> S chia hết cho 13

9 tháng 5 2019

Cách này cũng đúng nhưng có cách khác nhanh hơn

S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....

Gộp 4 số liên tiếp lại rồi C/M

Chúc học tốt

6 tháng 12 2020
Bạn làm đúng rồi nhưng hơi dài
9 tháng 5 2019

từ (1) và (2)

=> S ⋮5

mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi

nên đánh (2) vào"=>S⋮5"

Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"

9 tháng 5 2019

1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.

Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)

13 tháng 4 2016

không biết thì thôi 

vu tien thinh

avt629385_60by60.jpg

tao khong biet

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)