Tìm a lớn nhất sao cho 44; 85; 65 : a dư 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
12 , 14 , 60 chia hết cho a
mà số lớn nhất thỏa mãn yêu cầu là 2
vì chia hết cho 12 chỉ có : 1 , 2 , 3 , 4 , 6 , 12
14 là : 1 , 2 , 7 , 14
vậy a lớn nhất là 2
2/
42 , 84 , 63 chia hết cho a
a = 3
vì chia hết cho 63 có : 1 , 3 , 9 , ...
42 : 1 , 3 , 6 , 7 , 2 , ....
vì vậy a lớn nhất = 3
3)1;4;9;16;25;36;...
4)1;2;3;4;7;11;18;...
5)1;2;5;9;16;27;...
6)0;3;8;15;24;35;...
7)2;5;10;17;26;...
8)1;3;6;10;15;21;28;...
Lời giải:
Theo đề thì $44-2,86-2, 65-2\vdots x$
Hay $42,84, 63\vdots x$
Hay $x=ƯC(42,84,63)$
Để $x$ lớn nhất thì $x$ là ƯCLN(42,84,63)
$\Rightarrow x=21$
giúp tuiiiiiiiiiiiiii nữaaaaaaaaaaaaaaaaaaaaaaaaaaaa
HELP ME AAAAAAAAAAAAAAA!!!
\(1,\Rightarrow x-2=ƯCLN\left(44,86,65\right)=1\\ \Rightarrow x=1+2=3\\ 2,\Rightarrow\left\{{}\begin{matrix}268⋮x-18\\390⋮x-40\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}268-18=250⋮x\\390-40=350⋮x\end{matrix}\right.\\ \Rightarrow x\inƯC\left(250,350\right)=Ư\left(50\right)=\left\{1;2;5;10;25;50\right\}\)
ta có
\(6,4\times a>44\text{ nên }a>\frac{44}{6,4}=6,875\)
vậy số a tự nhiên bé nhất thỏa mãn là a=7
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Làm bừa coi xem đk :b
\(M\in\Delta:y=3-x\Rightarrow M\left(x;3-x\right)\)
a/ MA+MB min
\(MA=\sqrt{\left(x_A-x_M\right)^2+\left(y_A-y_M\right)^2};MB=\sqrt{\left(x_B-x_M\right)^2+\left(y_B-y_M\right)^2}\)
\(Minkovsky:MA+MB\ge\sqrt{\left(x_M-x_A+x_M-x_B\right)^2+\left(y_M-y_A+y_M-y_B\right)^2}\)
\("="\Leftrightarrow\dfrac{x_A-x_M}{y_A-y_M}=\dfrac{x_B-x_M}{y_B-y_M}\Leftrightarrow\dfrac{1-x}{-1-3+x}=\dfrac{-x}{1-3+x}\)
\(\Leftrightarrow x=-2\Rightarrow y=5\Rightarrow M\left(-2;5\right)\)
|MA-MB| max
\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{1+4}=\sqrt{5}\)
Theo bdt tam giác ta luôn có: \(\left|MA-MB\right|\le AB\)
\(\Leftrightarrow\left|\sqrt{\left(x_M-1\right)^2+\left(y_M+1\right)^2}-\sqrt{x_M^2+\left(y_M-1\right)^2}\right|\le\sqrt{5}\)
\("="\Leftrightarrow M,A,B-thang-hang\)
\(\Leftrightarrow\overrightarrow{MA}=k\overrightarrow{MB}\Leftrightarrow\left\{{}\begin{matrix}x_A-x_M=k\left(x_B-x_M\right)\\y_A-y_M=k\left(y_B-y_M\right)\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1-x}{-x}=\dfrac{-4+x}{-2+x}\Leftrightarrow x=-2\Rightarrow y=5\Rightarrow M\left(-2;5\right)\)
Câu b tương tự bạn tự làm nốt
a) Các số chia hết cho:
55 là 5,10,15,20,25,30,35,...5,10,15,20,25,30,35,...
66 là 6,12,18,24,30,36,..6,12,18,24,30,36,..
1010 là 10,20,30,40,...10,20,30,40,...
→→Vậy xx nhỏ nhất để chia hết cho 5,6,105,6,10 là 30
b) 24 : x, 36 : x , 160 : x và x lớn nhất => x = ƯCLN (24, 36, 160). Vậy x = 4.