Tìm các chữ số a và b để có số 48ab chia hết cho 25 và chia cho 3 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
48ab chia ht cho 25
Ab chia hết cho 25
Ab thuộc {00;25;50;75} => 4800 ; 4825 ; 4850 ; 4875
48ab chia hết cho 25 <=> ab chia hết cho 25.
Vì a,b là chữ số nên ab \(\in\) {00; 25; 50; 75}
Để 48ab ( gạch ngang ) chia hết cho 25 thì 48ab chia hết cho 5 Ơ\(h=0\) ; \(h=5\)
+ Với b = 0 , để 48a0 chia cho 3 dư 1 thì (17 + a) chia 3 dư 1 , mà a là chữ số nên a \(\in1;4;7\)
+ Với b = 5 , để 48a5 chia cho 3 dư 1 thì (17 +a ) : 3 dư 1 , mà a là chữ số nên a \(\in\) \(2;5;8\)
Thử lại : ta được số 4825 thõa mãn
\(\Rightarrow a=2,b=5\)
Vì 48ab chia hết cho 25 nên
=>ab chia hết cho 25
Vậy:ab thuộc {00;25;50;75}
a) Vì a52b chia hết cho 3 và 5
nên => b = 0 hoặc b = 5
Nếu b = 0 thì a thuộc { 2; 5; 8 }
Nếu b = 5 thì a thuộc { 0; 3; 6; 9 }
b) Vì 48ab chia hết cho 25
=> ab thuộc { 00; 25; 50; 75 }
Mà 48ab chia hết cho 2 => ab thuộc { 00; 50 }
c) Vì 283ab chia hết cho 2; 5 và 9.
=> b = 0 . Ta có : 283a0 chia hết cho 9
=> a = 4
Bài 1:
Đặt \(X=\overline{4a2b}\)
X chia hết cho 2;5 nên X chia hết cho 10
=>X có chữ số tận cùng là 0
=>b=0
=>\(X=\overline{4a20}\)
X chia hết cho 9
=>\(\left(4+a+2+0\right)⋮9\)
=>\(\left(a+6\right)⋮9\)
=>a=3
vậy: X=4320
Bài 2:
Đặt \(A=\overline{20a2b}\)
A chia hết cho 25 mà A có tận cùng là \(\overline{2b}\)
nên b=5
=>\(A=\overline{20a25}\)
A chia hết cho 9
=>\(2+0+a+2+5⋮9\)
=>\(a+9⋮9\)
=>\(a⋮9\)
=>\(a\in\left\{0;9\right\}\)
Bài 3:
Đặt \(B=\overline{3x57y}\)
B chia 5 dư 3 nên B có tận cùng là 3 hoặc 8(1)
B chia 2 dư 1 nên B có tận cùng là số lẻ (2)
Từ (1),(2) suy ra B có tận cùng là 3
=>y=3
=>\(B=\overline{3x573}\)
B chia hết cho 9
=>\(3+x+5+7+3⋮9\)
=>\(x+18⋮9\)
=>\(x\in\left\{0;9\right\}\)
Bài 5:
Vì số bút chì khi đem chia 5 hoặc 3 thì vừa hết số bút chì sẽ vừa chia hết cho 5; vừa chia hết cho 3
=>Số bút chì sẽ chia hết cho 15
mà số bút chì có nhiều hơn 20 chiếc và ít hơn 35 chiếc
nên số bút chì là 30 chiếc
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
48ab chia ht cho 25
Ab chia hết cho 25
Ab thuộc {00;25;50;75} => 4800 ; 4825 ; 4850 ; 4875