Cho a,b,c là các số tự nhiên khác 0, biết a + 2b + 3c chia hết cho 7. Chứng minh rằng: 17a + 13b + 9c chia hết cho 7 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17a +13b 9c = 3a +6b +9c +14a +7b
=3﴾a+2b+3c﴿ +14a +7b
a+2b+3c chia hết cho 7
=> 3﴾a+2b+3c﴿ chia hết cho 7
14a chia hết cho 7
7b chia hết cho 7
từng số chia hết cho 7, tổng của chúng chắc chắn chia hết cho 7
(chọn đúng với nha bạn)
Ta có : \(17a+13b+9c⋮7\Rightarrow\left(14a+3a\right)+\left(7b+6b\right)+9c⋮7\)
\(\Rightarrow\left(3a+6b+9c\right)+\left(14a+7b\right)⋮7\)
\(\Rightarrow3\left(a+2b+3c\right)+7\left(2a+b\right)⋮7\)
Vì : \(3\in\) N* ; \(a+2b+3c⋮7\Rightarrow3\left(a+2b+3c\right)⋮7\)
Mà : \(7\left(2a+b\right)⋮7\)
\(\Rightarrow3\left(a+2b+3c\right)+7\left(2a+b\right)⋮7\Rightarrow17a+13b+9c⋮7\)
\(a,6k\left(k\in N\right)\\ b,a+2b⋮7\Rightarrow\left\{{}\begin{matrix}a⋮7\\2b⋮7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\left(2⋮̸7\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4a⋮7\left(a⋮7\right)\\b⋮7\end{matrix}\right.\\ \Rightarrow4a+b⋮7\)
17a +13b 9c = 3a +6b +9c +14a +7b
=3(a+2b+3c) +14a +7b
a+2b+3c chia hết cho 7
=> 3(a+2b+3c) chia hết cho 7
14a chia hết cho 7
7b chia hết cho 7
từng số chia hết cho 7, tổng của chúng chắc chắn chia hết cho 7
\(17a+13b+9c=3a+6b+14a+7b\)
\(=3\left(a+2b+3c\right)+14b+7b\)
Vì \(a+2b+3c\)chia hết cho 7
\(\Rightarrow3\left(a+2b+3c\right)\)chia hết cho 7
Ta có: 14a chia hết cho 7 ( Vì 14 chia hết cho 7 )
7b chia hết cho 7 ( Vì 7 chia hết cho 7 )
Vì từng số hạng chia hết cho 7 nên tổng trên chia hết cho 7
=> 17a+13b+9c chia hết cho 7 (đpcm)