K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

15 tháng 1 2017

Đáp án B

Vì ABCD là hình vuông ⇒ A B ⊥ A D 1  

Ta có S A B ⊥ A B C D S A C ⊥ A B C D ⇒ S A ⊥ A B C D ⇒ S A ⊥ A B 2  

Từ (1), (2) suy ra A B ⊥ S A D   ⇒ S B ; S A D ^ = S B ; S A ^ = B S A ^  

Tam giác SAB vuông tại A, có  cos B S A ^ = S A S B = S A S A 2 + A B 2 = 2 5 5 .

9 tháng 2 2018

Chọn B.

Phương pháp: Sử dụng định nghĩa góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

3 tháng 6 2019

11 tháng 7 2018

Chọn B

15 tháng 7 2018

Đáp án C.

Kẻ C H ⊥ A B .

Bằng tính toán hình thang vuông thông thương ta có được:

19 tháng 1 2017

Đáp án C.

Không mất tính tổng quát, giả sử a = 1

Xét hệ trục tọa độ Oxyz với 

A 0 ; 0 ; 0 ; D 2 ; 0 ; 0 ;

B 0 ; 1 ; 0 ; S 0 ; 0 ; 5 .

Điểm C thỏa mãn 

B C → = 1 2 A D → = 1 ; 0 ; 0

⇒ C 1 ; 1 ; 0 .  

mp(SBC) có 

n 1 → = S B → ; B C → = 0 ; 1 ; − 5 ; 1 ; 0 ; 0

= 0 ; − 5 ; − 1 .

mp(SCD) có 

n 2 → = S D → ; C D → = 2 ; 0 ; − 5 ; 1 ; − 1 ; 0 = 5 ; 5 ; 2 .

Do đó côsin của góc tạo bởi hai mặt phẳng (SBC) và (SCD) bằng:

cos α = n 1 → . n 2 → n 1 . n 2 = 7 2 3 = 21 6 .

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 4 2019

25 tháng 10 2018

Đáp án A

Do AB // CD => giao tuyến của mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AB.

Dễ thấy Sx ⊥ (DSA) => Góc tạo bởi mặt phẳng (SAB) và (SCD) bằng góc  D S A ^ = a r c tan 1 3 = 30 0