tìm x,y biết: x/y=2/3 và 5x-2y=44
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, + \(\dfrac{x}{4}\) = \(\dfrac{y}{-5}\) = k ⇒ \(\left\{{}\begin{matrix}x=4k\\y=-5k\end{matrix}\right.\)
Mà -3x + 2y = 55
⇒ -3.4 + 2.-5k = 55
-12k + -10k = 55
(-12 + -10)k = 55
-22k = 55
k = \(\dfrac{55}{22}\) = \(\dfrac{5}{2}\)
+ x = \(\dfrac{5}{2}\).4 = 10
+ y = \(\dfrac{5}{2}\).-5 = \(\dfrac{-25}{2}\)
Vậy x = 10; y = \(\dfrac{-25}{2}\)
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
a,
x/4=y/-5 va -3x+2y=55
Theo de bai ta co :
x/4=y/-5 = -3x/-12=2y/-10 va -3x+2y=55
Ap dung tinh chat day ti so bang nhau ta co :
-3x/-12=2y/-10=-3x+2y/-12+10=55/-2=-27,5
Suy ra :
-3x/-12=-27,5=>x=-27,5.-12:-3=-100
2y/-10=-27,5=>y=-27,5.-10:2=137,5
b,
x/-3=y/8 va x^2-y^2=-44/5
Theo de bai ta co :
x/-3=y/8=x^2/=-9=y^2/64 va x^2-y^2=-8,8
Ap dung tinh chat day ti so bang nhau ta co :
x^2/-9=y^2/64 = x^2-y^2/-9-24=-8,8/-33=sai de
nho lik e
a) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) . Đến đấy áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{15}{7}\)
\(\Rightarrow x=\frac{15}{7}.2=\frac{30}{7}\) ; \(\Rightarrow y=\frac{15}{7}.5=\frac{75}{7}\)
b) \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{3}=\frac{y}{7}\). Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-3}\)
\(\Rightarrow x=-10\) ; \(y=-\frac{70}{3}\)
c) Sai đề vì 2x = 3y => 2x - 3y = 0 mà giả thiết lại đưa ra 2x - 3y = 15 => mâu thuẫn
d) \(\frac{x+3y}{x-2y}=\frac{2}{3}\Leftrightarrow3\left(x+3y\right)=2\left(x-2y\right)\)
\(\Leftrightarrow3x+9y=2x-4y\Leftrightarrow x=-13y\)
Thay x = -13y vào x+2y = 1 được :
x + 2y = 1 => (-13y) + 2y = 1 => -11y = 1 => y = -1/11
=> x = -1/11 . -13 = 13/11
Câu b) mình có nhầm xíu : \(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{10}{-4}=-\frac{5}{2}\)
\(\Rightarrow x=-\frac{15}{2};y=-\frac{35}{2}\)
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{5}=\frac{y}{2}=\frac{3x-2y}{15-4}=\frac{44}{11}=4\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{y}{2}=4\end{cases}\Rightarrow\hept{\begin{cases}x=20\\y=8\end{cases}}}\)
Vậy ...
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{5x}{10}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{5x}{10}=\frac{2y}{6}=\frac{5x-2y}{10-6}=\frac{44}{4}=11\)
\(\Rightarrow\hept{\begin{cases}x=11.2=22\\y=11.3=33\end{cases}}\)
Vậy ...
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{5x}{10}=\frac{2y}{6}=\frac{5x-2y}{4}=\frac{44}{4}=11\)
=> x/2=11=> x= 22 => y/3=11=>y=33
cách lớp 6