CMR: (n^2+3n-1)^2-1 chia hết cho 24 với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
Ta có:
(n2+3n+1)2-1
= (n2+3n+1-1)(n2+3n+1+1)
= (n2+3n)(n2+3n+2)
=(n2+3n)(n2+n+2n+2)
=(n2+3n)(n(n+1)+2(n+1))
=n(n+1)(n+2)(n+3)
với mọi n thuộc N thì n(n+1)(n+2)(n+3) là tích của 4 số tự nhiên liên tiếp
=> tồn tại 2 số chia hết cho 2 và chia hết cho 4 => chia hết cho 8
tồn tại một số chia hết cho 3
mà BCNN(8;3)=24 => n(n+1)(n+2)(n+3) chia hết cho 24
nên (n2+3n+1)2-1 chia hết cho 24 với mọi n thuộc N
Chúc bạn học tốt.
Ta có:
n-6 chia hết cho n-1
=> n-1-5 chia hết cho n-1
=> 5 chia hết cho n-1
=> n-1 thuộc ước của 5 = { 1;-1;5;-5}
Giải từng cái ra nhé
b,
3n+2 chia hết cho n-1
=> 3n-3+5 chia hết cho n-1
=> 3.(2-1) + 5 chia hết cho n-1
=> 5 chia hết cho n-1
giống câu a rồi nhé
c,
3n+24 chia hết cho n-4
=> 3n-12 +36 chia hết cho n-4
=> 3.(2-4) + 36 chia hết cho n-4
=> n-4 thuộc ước của 36 = { 1;-1;2;-2;6;-6;3;-3;4;-4;9;-9;12;-12-36;-36}
Giải ra nhé :)
Theo đề bài ta có :
\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
=> \(\left(n^2+3n+1\right)^2-1=n\left(n+3\right)\left(n^2+n+2n+2\right)\)
= \(n\left(n+3\right)\left(n\left(n+1\right)+2\left(n+1\right)\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)
Ta Thấy :
\(n;n+1;n+2;n+3\)là 4 số tự nhiên liên tiếp
Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)
Tích của 4 số tự nhiên liên tiếp cũng chia hết cho 4 vì có 2 số chẵn trong 4 số
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4\)
Tích của 2 số tự nhiên liên tiếp chia hết cho 2
=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\)
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\left(đpcm\right)\)
\(\left(n^2-3n+1\right)^2-1=\left(n^2-3n\right)\left(n^2-3n+2\right)=n\left(n-3\right)\left(n-1\right)\left(n-2\right)\)
-Theo nguyên lí Dirichlet, trong 4 số tự nhiên liên tiếp luôn có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 4.
\(\Rightarrow n\left(n-1\right)\left(n-2\right)\left(n-3\right)\) chia hết cho \(2.3.4=24\)
\(\Rightarrowđpcm\)
\(n=1\) thì biểu thức đó ko chia hết cho 24.