cho pt (m-3)x^2-2mx+m+2=0 tìm giá trị của m để pt trên có 1 nghiệm x=-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình có hai nghiệm khi
\(\Delta'=m^2-2\left(m^2-2\right)=-m^2+4\ge0\Leftrightarrow-2\le m\le2\)
b, Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(A=\left|2x_1x_2+x_1+x_2-4\right|\)
\(=\left|m^2-2-m-4\right|\)
\(=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)
\(=\left|-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\right|\le\dfrac{25}{4}\)
\(maxA=\dfrac{25}{4}\Leftrightarrow m=\dfrac{1}{2}\)
\(\Delta'=m-1\ge0\Rightarrow m\ge1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(A=x_1^3+x_2^3-2\left(x_1+x_2\right)\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-2\left(x_1+x_2\right)\)
\(=8m^3-3.2m\left(m^2-m+1\right)-4m\)
\(=2m^3+6m^2-10m\)
\(=2\left(m^3+3m^2-5m+1\right)-2\)
\(=2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]-2\)
Do \(m\ge1\Rightarrow\left\{{}\begin{matrix}m-1\ge0\\\left(m^2-1\right)+4m>0\end{matrix}\right.\)
\(\Rightarrow2\left(m-1\right)\left[\left(m^2-1\right)+4m\right]\ge0\)
\(\Rightarrow A\ge-2\)
\(A_{min}=-2\) khi \(m=1\)
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
1.a
ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)
= m^2-m^2+1=1>0
vậy pt luôn có 2 no vs mọi m
a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)
Vậy pt luôn có 2 nghiệm với mọi m
b)
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)
vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)
c)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)
\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
Ta có :
\(|x^2-2mx+1|=x+1 \\ \Leftrightarrow x^2-2mx+1=x+1 (x\geq -1) (1)\\ \ hoặc \ x^2-2mx+1=-x-1 ( x< -1) (2)\)
TH1: pt (1) tương đương:
\(x^2-x(2m+1)=0 \\ \Leftrightarrow x=0 (thỏa\ mãn) \ hoặc \ x=2m+1\)
Để pt có nghiệm duy nhất <=> 2m+1 < -1 <=> m<-1
TH2: pt (2) tương đương:
\(x^2-x(2m-1)+2=0\)
\(\Delta = (2m-1)^2-4.2=4m^2-4m-7\)
+) Nếu pt có nghiệm duy nhất
<=> \(m=\frac{1+2\sqrt{2}}{2} \ hoặc \ m=\frac{1-2\sqrt{2}}{2}\)
*) \(m=\frac{1+2\sqrt{2}}{2} \Rightarrow x = \sqrt{2} \) (loại vì căn 2 >-1 nên pt vô nghiệm)
*) \(m=\frac{1-2\sqrt{2}}{2} \Rightarrow x=-\sqrt{2}\) (thỏa mãn)
+) Nếu pt có 2 nghiệm x1, x2 sao cho x1 < -1 < = x2
<=> (x1+1)(x2+1) >=0 và x1+x2 >-2
<=> P + S + 1 >=0 và S>-2
Delta > 0 <=> \(m>\frac{1+2\sqrt{2}}{2} \ hoặc \ m<\frac{1-2\sqrt{2}}{2}\)
Theo viet ta có : S = 2m-1 ; P = 2
=> P + S + 1 =2m-1 + 1+ 2 >= 0 <=> m >= -1
Và S = 2m-1 > -2 <=> m > -1/2
<=> m> -1/2 kết hợp \(m>\frac{1+2\sqrt{2}}{2} \ hoặc \ m<\frac{1-2\sqrt{2}}{2}\)
<=> \(m>\frac{1+2\sqrt{2}}{2} \)
Vậy \(m>\frac{1+2\sqrt{2}}{2} ; m=\frac{1-2\sqrt{2}}{2} ; hoặc \ m< -1\)
\(\Delta'=m^2-2m+3=\left(m-1\right)^2+2>0\) ; \(\forall m\)
Vậy phương trình đã cho có 2 nghiệm phân biệt với mọi m
Thay `x=-2` vào pt ta có:
\(\left(m-3\right).\left(-2\right)^2-2.m.\left(-2\right)+m+2=0\\ \Leftrightarrow\left(m-3\right).4+4.m+m+2=0\\ \Leftrightarrow4m-12+4m+m+2=0\\ \Leftrightarrow9m-10=0\\ \Leftrightarrow m=\dfrac{10}{9}\)
Vậy để pt có 1 nghiệm là `x=-2` thì `m=10/9`
ng thành công luôn tự chủ và độc lập nhưng ko một mik , 1 vote