K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Giải theo công thức tan(x+2x)=(tanx+tan2x)/(1-tanx.tan2x) có vẻ nhanh hơn đó. 

Nhưng nhớ phải đặt điều kiện cho 3 cái cos dưới mẫu khác 0 (đk riêng của pt lượng giác)

21 tháng 7 2020

Giải phương trình : sin5x-sin3x=0

1 tháng 9 2023

Bước 1: Sử dụng công thức tan(A + B) để biểu diễn các hàm tan của tổng hai góc. Ta có: tan(A + B) = (tanA + tanB) / (1 - tanA * tanB)

Bước 2: Áp dụng công thức trên vào phương trình ban đầu, ta có: tan(2x + 3x) * tan(7x) = (tan2x + tan3x) / (1 - tan2x * tan3x) + tan7x

Bước 3: Đơn giản hóa phương trình: tan(5x) * tan(7x) = (tan2x + tan3x) / (1 - tan2x * tan3x) + tan7x

Bước 4: Sử dụng công thức tan(A + B) và tan(A - B) để biểu diễn các hàm tan của tổng và hiệu hai góc. Ta có: tan(A + B) = (tanA + tanB) / (1 - tanA * tanB) tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)

Bước 5: Áp dụng công thức trên vào phương trình, ta có: (tan5x + tan7x) / (1 - tan5x * tan7x) = (tan2x + tan3x) / (1 - tan2x * tan3x) + tan7x

Bước 6: Đơn giản hóa phương trình và đưa về dạng tổng cộng các hàm tan: (tan5x + tan7x) * (1 - tan2x * tan3x) = (tan2x + tan3x) * (1 - tan5x * tan7x) + tan7x * (1 - tan2x * tan3x) * (1 - tan5x * tan7x)

Bước 7: Đơn giản hóa và rút gọn phương trình. Ta có: tan5x - tan2x * tan3x * tan5x + tan7x - tan2x * tan3x * tan7x = tan2x + tan3x - tan2x * tan3x + tan7x - tan2x * tan3x * tan7x + tan7x - tan2x * tan3x * tan7x

Bước 8: Rút gọn và sắp xếp các thành phần. Ta có: tan5x - tan2x * tan3x * tan5x - tan2x - tan3x + tan2x * tan3x + tan7x - tan2x * tan3x * tan7x - tan7x = 0

Bước 9: Đơn giản hóa và rút gọn phương trình. Ta có: tan5x - tan2x - tan3x + tan7x - tan2x * tan3x * (tan5x + tan7x) = 0

Bước 10: Phân tích phương trình và tìm các giá trị của x thỏa mãn.

21 tháng 6 2021

ĐK: \(x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)

\(tan3x=tanx\)

\(\Leftrightarrow3x=x+k\pi\)

\(\Leftrightarrow x=\dfrac{k\pi}{2}\)

Đối chiếu điều kiện ta được \(x=k\pi\) là nghiệm của phương trình.

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:

$\tan 3x-\tan x=2$

$\Leftrightarrow \frac{3\tan x-\tan ^3x}{1-3\tan ^2x}-\tan x=2$

Đặt $\tan x=a$ thì:

$\frac{3a-a^3}{1-3a^2}-a=2$
$\Leftrightarrow a^3+3a^2+a-1=0$

$\Leftrihgtarrow a^2(a+1)+2a(a+1)-(a+1)=0$
$\Leftrightarrow (a+1)(a^2+2a-1)=0$

$\Leftrightarrow a=-1$ hoặc $a=-1\pm \sqrt{2}$

Đến đây thì đơn giản rồi.

 

NV
3 tháng 8 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\end{matrix}\right.\)

\(\dfrac{sin3x}{cos3x}-\dfrac{sinx}{cosx}=2\)

\(\Rightarrow sin3x.cosx-cos3x.sinx=2cos3x.cosx\)

\(\Leftrightarrow sin2x=cos4x-cos2x\)

\(\Leftrightarrow cos^22x-sin^22x-sin2x-cos2x=0\)

\(\Leftrightarrow\left(sin2x+cos2x\right)\left(cos2x-sin2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=0\\cos\left(2x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

26 tháng 8 2021

a, cos2x - sin7x = 0

⇔ cos2x = sin7x

⇔ cos2x = cos \(\left(7x-\dfrac{\pi}{2}\right)\)

⇔ \(\left[{}\begin{matrix}7x-\dfrac{\pi}{2}=2x+k2\pi\\7x-\dfrac{\pi}{2}=-2x+k2\pi\end{matrix}\right.\) với k là số nguyên

⇔ \(\left[{}\begin{matrix}x=\dfrac{\pi}{10}+\dfrac{k.2\pi}{5}\\x=\dfrac{\pi}{18}+\dfrac{k2\pi}{9}\end{matrix}\right.\) với k là số nguyên 

27 tháng 8 2021

Giúp mik giải hết b,c luôn đk

8 tháng 8 2018

Đáp án D

1 tháng 7 2017

15 tháng 6 2019

Đáp án A

Tìm điều kiện để phương trình ban đầu có nghĩa. Giải trực tiếp phương trình đã cho và đối chiếu điều kiện để suy ra nghiệm cần tìm.

Điều kiện

Ta có 

Đối chiếu với điều kiện

Khi đó 

Từ 

Do vế phải của biểu thức trên không là số nguyên nó luôn đúng.

Vậy nghiệm của phương trình 

5 tháng 10 2019