Cho tam giác PQR cân tại P. Trên cạnh PQ vẽ T sao cho QT = 2PT. Vẽ QG vuông góc với RT. Gọi M là trung điểm của PG. Tính góc PMQ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR
a: ta có: ΔPQR vuông tại P
=>\(QR^2=PQ^2+PR^2\)
=>\(QR^2=8^2+6^2=100\)
=>\(QR=\sqrt{100}=10\left(cm\right)\)
Ta có: ΔRPQ vuông tại P
mà PM là đường trung tuyến
nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)
b: Xét tứ giác PNMK có
\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)
=>PNMK là hình chữ nhật
c: Xét ΔRPQ có
M là trung điểm của RQ
MK//RP
Do đó: K là trung điểm của PQ
=>PK=KQ(1)
Ta có: PKMN là hình chữ nhật
=>PK=MN(2)
Từ (1) và (2) suy ra KQ=MN
Ta có: PK//MN
K\(\in\)PQ
Do đó: NM//KQ
Xét tứ giác KQMN có
KQ//MN
KQ=MN
Do đó: KQMN là hình bình hành
=>QN cắt MK tại trung điểm của mỗi đường
mà O là trung điểm của MK
nên O là trung điểm của QN
=>OQ=ON
Xét tứ giác PMQH có
K là trung điểm chung của PQ và MN
=>PMQH là hình bình hành
Hình bình hành PMQH có PQ\(\perp\)MH
nên PMQH là hình thoi
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔPAM vuông tại P và ΔQAM vuông tại Q có
AM chung
\(\widehat{PAM}=\widehat{QAM}\)
Do đó: ΔPAM=ΔQAM
=>PA=QA và MP=MQ
b: AP=AQ
=>A nằm trên đường trung trực của PQ(1)
MP=MQ
=>M nằm trên đường trung trực của PQ(2)
Từ (1) và (2) suy ra AM là đường trung trực của PQ
=>AM\(\perp\)PQ
Ta có; ΔABC vuông cân tại C
mà CD là đường trung tuyến
nên CD\(\perp\)AB và CD là phân giác của \(\widehat{ACB}\)
=>\(\widehat{ACD}=\widehat{BCD}=\dfrac{90^0}{2}=45^0\)
Gọi O là giao điểm của CM với FE
Xét tứ giác CEMF có
\(\widehat{CEM}=\widehat{CFM}=\widehat{FCE}=90^0\)
=>CEMF là hình chữ nhật
=>CM cắt EF tại trung điểm của mỗi đường và CM=EF
=>O là trung điểm chung của CM và EF và CM=EF
=>OM=OC=OE=OF
=>O là tâm đường tròn ngoại tiếp tứ giác CFME
\(\widehat{CEM}=\widehat{CFM}=\widehat{CDM}=90^0\)
Do đó: C,E,M,F,D cùng thuộc đường tròn đường kính CM
=>C,E,M,F,D cùng thuộc (O)
=>D thuộc (O)
Xét (O) có
ΔDFE nội tiếp
FE là đường kính
Do đó: ΔDFE vuông tại D
Xét tứ giác FDEC có
\(\widehat{FCE}+\widehat{FDE}=180^0\)
=>FDEC là tứ giác nội tiếp
=>\(\widehat{DFE}=\widehat{DCE}=\widehat{DCA}=45^0\)
Xét ΔDFE vuông tại D có \(\widehat{DFE}=45^0\)
nên ΔDFE vuông cân tại D