K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

A B C K N M P Q

Ta dễ thấy tam giác KMN đồng dạng tam giác ABC (g.g)

\(\Rightarrow\frac{S_{KMN}}{S_{ABC}}=\left(\frac{MN}{BC}\right)^2\)

Vì \(S_{ABC}\) và \(MN\) không đổi nên \(S_{KMN}\) đạt giá trị nhỏ nhất khi MN đạt giá trị nhỏ nhất. Khi đó MN sẽ trùng với đường trung bình PQ trên hình vẽ . Vậy \(minS_{KMN}=\frac{1}{4}S_{ABC}\Leftrightarrow MN=PQ\)

29 tháng 10 2016

Khó quá

Gọi AD,BE,CF lần lượt là đường cao cảu tam giác ABC,mà H là trực tâm của tam giác ABC nên AD,BE,CF đồng quy tại H

Ta có:\(\widehat{HAM}=90^0-\widehat{AHE}=90^0-\widehat{BHD}=\widehat{KBH}\)

Ta lại có:\(\widehat{AHM}=90^0-\widehat{KHD}=\widehat{BKH}\)

Xét \(\Delta AHM\&\Delta BKH\)có:

\(\hept{\begin{cases}\widehat{HAM}=\widehat{KBH}\\\widehat{AHM}=\widehat{BKH}\end{cases}}\)

\(\Rightarrow\Delta HAM\)đồng dạng với \(\Delta BKH\left(g.g\right)\)(mk ko bt kí hiệu đồng dạng trong olm)

\(\Rightarrow\frac{AH}{BK}=\frac{HM}{HK}\)

\(CMTT:\Rightarrow\frac{AH}{KC}=\frac{HN}{HK}\)

Mà BK=KC\(\Rightarrow\frac{HM}{HK}=\frac{HN}{HK}\Rightarrow HM=HN\)

Suy ra HK là đường trung tuyến của tam giác NMK,mà HK cũng là đường cao của tam giác NMK

Suy ra tam giác NMK cân tại K(đpcm)

4 tháng 9 2017

b1:

Bạn cũng có thể gộp chung thế này: 
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >= 
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 = 
AH^2/2 + (M'H - M'A)^2/2 
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và 
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH. 
=> M trùng với M' và MA = M'A = M'H = MH 
=> M nằm ở trung điểm AH

25 tháng 7 2023

giúp e vs

 

24 tháng 7 2023

giúp mik vs ;-;