Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB<AC) hai đường BE,CF của tam giác ABC cắt nhau tại trực tâm H.Vẽ đường kính AD của (O).Gọi K là giao điểm của AH với (O) L,P lần lượt là giao điểm của BC và EF,AC và KD.CM:
1)Tứ giác EHKP nội tiếp và xác định tâm I của đường tròn này,chứng minh I thuộc BC
2)Gọi M là trung điểm của BC.Chứng minh:AH=2OM
3)Gọi T là giao điểm của (O) với đường tròn ngoại tiếp tam giác EFK.Chứng minh:L,K,T thẳng hàng
1: góc HEP+góc HKP=180 độ
=>HEPK nội tiếp
2: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hbh
=>M là trung điểm của HD
Xét ΔAHD có DO/DA=DM/DH
nên OM/AH=DO/DA=1/2