Tập nghiệm của bất phương trình \(\sqrt{x^2-x-12}\)<x-1 là
A.1<x<13
B.x>1
C.x>4
D.-3<x<13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
<=> \(\left(\sqrt{x+2}\right)^2\)> x2
<=> \(x+2>x^2\)
<=> \(-\left(x^2-x-2\right)>0\)
<=>\(x^2-x-2< 0\)
<=> \(x^2-2x+x-2< 0\)
<=> \(\left(x-2\right)\left(x+1\right)< 0\) vì 2 tích nhân với nhau nhỏ hơn 0 nên
<=> \(\orbr{\begin{cases}x-2>0\\x+1< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< -1\end{cases}}\)
và \(\orbr{\begin{cases}x-2< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 2\\x>-1\end{cases}}\)
TXĐ: \(x>-4\)
Khi đó BPT tương đương:
\(x^2+2x>3\Leftrightarrow x^2+2x-3>0\)
\(\Rightarrow\left[{}\begin{matrix}x>1\\x< -3\end{matrix}\right.\)
Vậy tập nghiệm của BPT là: \(\left[{}\begin{matrix}x>1\\-3< x< -3\end{matrix}\right.\)
ĐK x >= - 2 (1)
bpt <=> x + 2 > x^2
=> x^2 - x - 2 < 0
=> x^2 - 2x + x - 2 < 0
=> x(x-2) + ( x- 2 ) < 0
=> ( x+ 1 )(x - 2 ) < 0
=> x < 2 hoặc x > -1 (2)
Từ (1) và (2) => -2 <= x < 2
=> x thuộc Z => x = { -2 ; - 1 ; 0 ;1 }
\(a,ĐK:x\ge\dfrac{1}{5}\\ PT\Leftrightarrow5x-1=64\\ \Leftrightarrow x=13\left(tm\right)\\ b,ĐK:x\ge\dfrac{2}{5}\\ BPT\Leftrightarrow5x-2< 16\\ \Leftrightarrow x< \dfrac{18}{5}\\ \Leftrightarrow\dfrac{2}{5}\le x< \dfrac{18}{5}\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\left|x-1\right|-\left|x-2\right|=x-3\\ \Leftrightarrow\left[{}\begin{matrix}1-x-\left(2-x\right)=x-3\left(x< 1\right)\\x-1-\left(2-x\right)=x-3\left(1\le x< 2\right)\\x-1-\left(x-2\right)=x-3\left(x\ge2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8-x\ge0\\x-2\ge0\\8-x\le\left(x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\le x\le8\\x^2-3x-4\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\le x\le8\\\left[{}\begin{matrix}x\ge4\\x\le-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow4\le x\le8\)
x=\(\left\{{}\begin{matrix}x=3\\x=-3\\x=-2\end{matrix}\right.\)
giải rõ ràng hộ mình với ạ