K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

tham khảo link: https://lazi.vn/edu/exercise/202136/cho-a-b-c-0-chung-minh-cac-bat-dang-thuc-sau

4 tháng 5 2018

\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))

Vậy BĐT đã được chứng minh

21 tháng 6 2018

vì a>0;b>0;c>0\(\Rightarrow\sqrt{a};\sqrt{b};\sqrt{c}\)luôn được xác định

\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\Rightarrow a-2\sqrt{ab}+b>=0\Rightarrow a+b>=2\sqrt{ab}\)

\(\left(\sqrt{b}-\sqrt{c}\right)^2>=0\Rightarrow b-2\sqrt{bc}+c>=0\Rightarrow b+c>=2\sqrt{bc}\)

\(\left(\sqrt{c}-\sqrt{a}\right)^2>=0\Rightarrow c-2\sqrt{ca}+a>=0\Rightarrow c+a>+2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)>=2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)(đpcm)

dấu = xảy ra khi a=b=c

16 tháng 9 2019

Áp dụng ĐBT Cauchy - schwarz cho 2 số không âm, ta được:

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}=8abc\left(đpcm\right)\)

8 tháng 6 2016

a) đề sai à bạn 4/a+b chứ

8 tháng 6 2016

b)Theo BĐT Côsi:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)

Tương tự ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm. 

Đẳng thức xảy ra khi a = b = c

8 tháng 6 2016

a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra

b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)

  \(\frac{ab}{c}+\frac{ac}{b}\ge2a\)

   \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng 2 vế của bất đẳng thức ta được :

\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)

=> bất đẳng thức cần chứng minh

8 tháng 6 2016

a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi

Giả sử  \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)

=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)

=>\(\left(a+b\right)\left(a+b\right)\) > 4ab

=>\(\left(a+b\right)^2-4ab\) > 0

=>\(a^2+2ab+b^2-4ab\) > 0

=>\(a^2-2ab+b^2\) > 0

=>\(\left(a-b\right)^2\) > 0

BĐT cuối luôn đúng với mọi a;b

=>điều giả sử là đúng,ta có đpcm

(*)đề sai nên Kiệt ko ra là phải

 

23 tháng 9 2020
https://i.imgur.com/QBCcqpP.jpg
23 tháng 9 2020

Đặt 2 ra ngoài thì đỡ phải dùng căn đó bnbanhqua

2 tháng 11 2019

\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

\(b^3+b^3+a^3\ge3b^2a\)

\(\Rightarrow3\left(a^3+b^3\right)\ge3\left(a^2b+b^2a\right)\Leftrightarrow\left(a^3+b^3\right)\ge\left(a^2b+b^2a\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)