K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

2. Thành phần biệt lập phụ chú (Dấu gạch ngang em nhé!)

 

14 tháng 11 2021

E cảm ơn

30 tháng 9 2021

a) Đặt \(a=x^2+x\)

Đa thức trở thành: \(a^2-14a+24=\left(a^2-14a+49\right)-25=\left(a-7\right)^2-25=\left(a-7-5\right)\left(a-7+5\right)=\left(a-12\right)\left(a-2\right)\)

Thay a:

\(\left(a-12\right)\left(a-2\right)=\left(x^2+x-12\right)\left(x^2+x-2\right)\)

b) Đặt \(a=x^2+x\)

Đa thức trở thành:

\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)-12=a^2+4a-12=\left(a^2+4x+4\right)-16=\left(a+2\right)^2-16=\left(a+2-4\right)\left(a+2+4\right)=\left(a-2\right)\left(a+6\right)\)

Thay a:

\(\left(a-2\right)\left(a+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

27 tháng 2 2022

Xét tam giác MNP có MP là đường phân giác của \(\widehat{MNP}\) ta có:

\(\dfrac{MN}{NP}=\dfrac{MF}{FP}\Leftrightarrow\dfrac{MN}{NP}=\dfrac{MF}{MP-MF}\Leftrightarrow\dfrac{6}{10}=\dfrac{MF}{8-MF}\Rightarrow MF=3\left(cm\right)\)\(\Rightarrow FP=8-3=5\left(cm\right)\)

Xét tam giác MNP có ME là đường cao ứng với cạnh huyền, ta có: \(\dfrac{1}{ME^2}=\dfrac{1}{MN^2}+\dfrac{1}{MP^2}\Leftrightarrow\dfrac{1}{ME^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\Rightarrow ME=4,8\left(cm\right)\)

Đăng 5 -6 câu từng lần ha bạn!

7 tháng 2 2022

\(1,7x-8=4x+7\)

\(\Leftrightarrow7x-8-4x=7\)

\(\Leftrightarrow7x-4x=7+8\)

\(\Leftrightarrow3x=15\)

\(\Rightarrow x=5\)

\(2,3-2x=3\left(x+1\right)-x-2\)

\(\Leftrightarrow3-2x=2x+1\)

\(\Leftrightarrow-2x+3=2x+1\)

\(\Leftrightarrow-2x-2x=1-3\)

\(\Leftrightarrow-4x=-2\)

\(\Rightarrow x=\dfrac{1}{2}\)

\(3,5\left(3x+2\right)=4x+1\)

\(\Leftrightarrow5.3x+5.2=4x+1\)

\(\Leftrightarrow15x+10=4x+1\)

\(\Leftrightarrow15x-4x=1-10\)

\(\Leftrightarrow11x=-9\)

\(\Rightarrow x=\dfrac{-9}{11}\)

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)

Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/9=CD/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{9}=\dfrac{CD}{15}=\dfrac{AD+CD}{9+15}=\dfrac{12}{24}=\dfrac{1}{2}\)

Do đó: AD=4,5(cm); CD=7,5(cm)

b: Xét ΔABC có DE//AB

nên DE/AB=CD/CA

=>DE/9=7,5/12

=>DE/9=5/8

hay DE=45/8(cm)

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

b: AC=12cm

AH=7,2cm

Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/9=CD/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{9}=\dfrac{CD}{15}=\dfrac{AD+CD}{9+15}=\dfrac{12}{24}=\dfrac{1}{2}\)

Do đó: AD=4,5cm; CD=7,5cm

a: Xét tứ giác MIPC có

K là trung điểm của MP

K là trung điểm của IC

Do đó: MIPC là hình bình hành

mà MI=PI

nên MIPC là hình thoi